山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 40-47.doi: 10.6040/j.issn.1672-3961.0.2024.183
• 深度学习与视觉专题 • 上一篇
周群颖,隋家成,张继*,王洪元
ZHOU Qunying, SUI Jiacheng, ZHANG Ji*, WANG Hongyuan
摘要: 目前,基于深度学习的工业品表面缺陷检测存在着负样本数据集少、样本易受复杂工业环境影响无法提取有效特征、标注数据集需要耗费大量人工成本的问题。为解决上述问题,本研究提出一个基于知识蒸馏的工业品表面缺陷检测模型,并在此模型中加入自监督预测卷积模块和无参数注意力机制。该模型将教师网络所学习到的丰富特征知识传递给学生网络,有效提高模型特征表达能力并对缺陷进行像素级定位。该模型在 MVTec-AD数据集进行试验,并与各类试验方法的结果进行对比,检测指标和定位指标在不同模型曲线下面积AROC上有所提升,证明该方法可以有效提高模型的检测和定位能力。
中图分类号:
| [1] 孙博言, 王洪元, 刘乾, 等. 基于多尺度和注意力机制的混合监督金属表面缺陷检测[J]. 智能系统学报, 2023, 18(4): 886-893. SUN Boyan, WANG Hongyuan, LIU Qian, et al. Hybrid supervised metal surface defect detection based on multi-scale and attention[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 886-893. [2] 李键, 李华, 胡翔坤, 等. 基于深度学习的表面缺陷检测技术研究进展[J]. 计算机集成制造系统, 2024, 30(3): 774-790. LI Jian, LI Hua, HU Xiangkun, et al. Research progress of surface defect detection technology based on deep learning[J].Computer Integrated Manufacturing System, 2024, 30(3):774-790. [3] CHUA L O. CNN: a paradigm for complexity[M].Santiago, Chile: World Scientific Publishing Co. Pte Ltd., 1999: 529-837. [4] NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644-1649. [5] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[J]. Advances in Neural Information Processing Systems, 1993, 7(4):669-688. [6] WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 2016, 184: 232-242. [7] ZHENG X Q, WANG H C, CHEN J, et al. A generic semi-supervised deep learning-based approach for automated surface inspection[J]. IEEE Access, 2020, 8: 114088-114099. [8] 成科扬, 丁杨柳, 詹永照,等. 基于回顾蒸馏学习的无监督工业品缺陷检测方法[J]. 南京大学学报(自然科学版), 2022, 58(6): 1030-1040. CHENG Keyang, DING Yangliu, ZHAN Yongzhao, et al. Unsupervised industrial product defect detection method based on retrospective distillation learning [J].Journal of Nanjing University(Natural Science Edition), 2022, 58(6): 1030-1040. [9] BUCILUĂ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA. ACM, 2006: 535-541. [10] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2024-03-12]. https://arxiv.org/abs/1503.02531 [11] GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819. [12] YU L, YAZICI V O, LIU X L, et al. Learning metrics from teachers: compact networks for image embedding[C] //Knowledge Distillation: A Survey.Long Beach, USA: IEEE, 2019: 2907-2916. [13] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 3962-3971. [14] CHEN M H, LAINA I, VEDALDI A. Training-free layout control with cross-attention guidance[C] //2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2024: 5331-5341. [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, USA:IEEE, 2018: 7132-7141. [16] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2020. Seattle, WA, USA:IEEE, 2020: 13-19. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] // Computer Vision-ECCV 2018. Munich,Germany: Springer International Publishing, 2018: 3-19. [18] LI X, WANG W H, HU X L, et al. Selective kernel networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,USA: IEEE, 2019: 510-519. [19] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C] //2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009: 248-255. [20] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 9592-9600. [21] HENDRYCKS D, GIMPEL K, NOVELLO P, et al. A baseline for detecting misclassified and out-of-distribution examples in neural networks[EB/OL].(2016-10-07)[2024-03-12]. https://arxiv.org/abs/1610.02136v3 [22] SABOKROU M, POURREZA M, FAYYAZ M, et al. AVID: adversarial visual irregularity detection[C] // Computer Vision-ACCV 2018. Perth, Australia: Springer International Publishing, 2019: 488-505. [23] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C] // Information Processing in Medical Imaging. Orlando, USA: Springer International Publishing, 2017: 146-157. [24] BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL].(2018-07-05)[2024-03-12]. https://arxiv.org/abs/1807.02011v3 [25] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C] // Proceedings of the international conference on machine learning. Stockholm, Sweden: ICML, 2018: 4393-4402. [26] DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[EB/OL].(2020-02-10)[2024-03-12]. https://arxiv.org/abs/2002.03734v1 [27] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, USA: IEEE, 2021: 14902-14912. [28] NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): 209-224. [29] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C] //2021 IEEE Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2021: 3560-3569. |
| [1] | 李丰,文益民. 融合多尺度视觉和文本语义特征的图像描述生成算法[J]. 山东大学学报 (工学版), 2025, 55(3): 80-87. |
| [2] | 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79. |
| [3] | 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71. |
| [4] | 王禹鸥,苑迎春,何振学,王克俭. 改进RoBERTa、多实例学习和双重注意力机制的关系抽取方法[J]. 山东大学学报 (工学版), 2025, 55(2): 78-87. |
| [5] | 邹正标,刘毅志,廖祝华,赵肄江. 动态交通流量预测的时空注意力图卷积网络[J]. 山东大学学报 (工学版), 2024, 54(5): 50-61. |
| [6] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [7] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [8] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [9] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [10] | 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63. |
| [11] | 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89. |
| [12] | 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79. |
| [13] | 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108. |
| [14] | 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7. |
| [15] | 王旭晴,魏伟波,杨光宇,宋金涛,吕婷,潘振宽. 基于算法展开的图像盲去模糊深度学习网络[J]. 山东大学学报 (工学版), 2023, 53(6): 35-46. |
|
||