您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 111-120.doi: 10.6040/j.issn.1672-3961.0.2024.169

• 土木工程 • 上一篇    

基于小尺度滚刀直线切割试验的岩石强度预测

耿麒1,李晓斌1,黄雨枫1,汪学斌1*,杨沐霖1,郭惠川2,章慧健3   

  1. 1.道路施工技术与装备教育部重点实验室(长安大学), 陕西 西安 710064;2. 中铁十八局集团有限公司, 天津 300222;3.西南交通大学土木工程学院, 四川 成都 610031
  • 发布日期:2025-06-05
  • 作者简介:耿麒(1989— ),男,山东淄博人,副教授,博士生导师,博士,主要研究方向为大型隧道掘进装备研制及施工. E-mail:gengqi@chd.edu.cn. *通信作者简介:汪学斌(1986— ),男,陕西商洛人,讲师,硕士生导师,博士,主要研究方向为工程机械的设计与仿真. E-mail:wangxuebin@chd.edu.cn
  • 基金资助:
    国家自然基金面上资助项目(52278390);陕西省自然科学基础研究计划面上资助项目(2025JC-YBMS-416);陕西省留学人员科技活动择优资助项目(2024006)

Rock strength prediction based on scaled linear cutting test by disc cutter

GENG Qi1, LI Xiaobin1, HUANG Yufeng1, WANG Xuebin1*, YANG Mulin1, GUO Huichuan2, ZHANG Huijian3   

  1. GENG Qi1, LI Xiaobin1, HUANG Yufeng1, WANG Xuebin1*, YANG Mulin1, GUO Huichuan2, ZHANG Huijian3(1. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education(Chang'an University), Xi'an 710064, Shaanxi, China;
    2. China Railway 18th Bureau Group Corporation Limited, Tianjin 300222, China;
    3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Published:2025-06-05

摘要: 为支撑岩土、隧道工程中的岩石选样及现场施工的岩石强度测试,研究利用小尺度滚刀直线切割试验反推岩石强度。从隧道工程现场和岩石矿场采集单轴抗压强度为50~230 MPa的岩石试样共9批次,制备棒状和块状试样并分别开展单轴压缩、巴西劈裂和小尺度滚刀直线切割试验;选取其中7批次试验数据,分别得到单轴抗压强度、劈裂抗拉强度与直线切割试验的法向力均值、峰值及峰均值的拟合函数,用剩余2批次试验结果验证所得预测模型的准确性。结果表明:岩石单轴抗压强度与法向载荷的拟合相关系数大于0.9,劈裂抗拉强度与法向载荷的拟合相关系数大于0.8,说明岩石强度与切割载荷成强线性相关性;验证试验发现,利用法向力均值、峰均值验证时,岩石单轴抗压强度的预测值与试验值误差小于5%,劈裂抗拉强度的预测值与试验值误差小于10%,说明所建模型具有较高的准确性。使用本研究所提出的试验方法及所建模型,可以快速准确地预估岩石试样的强度,为室内试验时岩石采样和现场施工时岩石强度评估提供了一种有效的手段。

关键词: 滚刀破岩, 岩石强度, 直线切割试验, 缩尺试验, 预测模型

Abstract: In order to support geotechnical and rock sample selection in tunnel engineering and rock strength testing in on-site construction, the research used scaled linear cutting test to infer rock strength. A total of 9 batches of rock samples with uniaxial compressive strength of 50-230 MPa were collected from tunnel engineering sites and rock mines. Rod-shaped and block-shaped samples were prepared and subjected to uniaxial compression, Brazilian splitting and scaled linear cutting test respectively; selected 7 batches of test data to obtain the fitting functions of the uniaxial compressive strength, splitting tensile strength and normal force mean, peak value and peak mean value of the scaled linear cutting test, and used the remaining 2 batches of test results to verify the accuracy of the resulting prediction model. The results showed that the fitting correlation coefficients between rock uniaxial compressive strength and normal load were greater than 0.9, and the fitting correlation coefficients between splitting tensile strength and normal load were greater than 0.8, indicating that rock strength had a strong linear correlation with cutting load. The verification test found that when using the average normal force and the average peak value to verify, the error between the predicted value and the experimental value of the uniaxial compressive strength of the rock was less than 5%, and the error between the predicted value and the experimental value of the splitting tensile strength was less than 10%. It showed that the built model had high accuracy. Using the test methods and models proposed in this research, the strength of rock samples could be quickly and accurately estimated, which provided an effective means for rock sampling during indoor testing and rock strength assessment during on-site construction.

Key words: rock breaking by disc cutter, rock strength, linear cutting test, scaled test, predictive model

中图分类号: 

  • TU458+.3
[1] 石振明, 黄雨. 工程地质学[M].3版. 北京: 中国建筑工业出版社, 2018.
[2] 钟长平, 竺维彬, 王俊彬, 等. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66. ZHONG Changping, ZHU Weibin, WANG Junbin,et al. Principle and application of double-mode shield machine/TBM[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 47-66.
[3] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6. TAN Zhongsheng. Construction concepts and key technologies for tunnel and underground engineering:a celebration of main academic thoughts and achievements of Academician WANG Mengshu[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 1-6.
[4] 中国电力企业联合会. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
[5] 段伟强, 张小强. 现场岩石点载荷试验分析研究[J]. 工程勘察, 2009(增刊2): 66-70. DUAN Weiqiang, ZHANG Xiaoqiang. On-site rock point load test analysis and research[J]. Geotechnical Investigation & Surveying, 2009(Suppl.2): 66-70.
[6] BALCI C. Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: a case study in Kozyatagi-Kadikoy Metro Tunnel, Turkey[J]. Tunnelling and Underg-round Space Technology, 2009, 24(4): 423-435.
[7] ROSTAMI J. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone crush[D]. Golden,USA: Colorado School of Mines, 1997.
[8] 龚秋明, 何冠文, 赵晓豹, 等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报, 2015, 37(1): 54-60. GONG Qiuming, HE Guanwen, ZHAO Xiaobao, et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 54-60.
[9] 龚秋明, 吴帆, 殷丽君. 岩石复合地层滚刀线性切割破岩试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 67-73. GONG Qiuming, WU Fan, YIN Lijun. Experimental study on the rock mixed ground under disc cutter by linear cutting[J]. Hazard Control in Tunnelling and Under-ground Engineering, 2019, 1(2): 67-73.
[10] CHO J W, JEON S, YU S H, et al. Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method[J]. Tunnelling and Underground Space Technology, 2010, 25(3): 230-244.
[11] PAN Y C, LIU Q S, LIU J P, et al. Full-scale linear cutting tests in Chongqing sandstone to study the influence of confining stress on rock cutting forces by TBM disc cutter[J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1697-1713.
[12] PAN Y C, LIU Q S, KONG X X, et al. Full-scale linear cutting test in Chongqing sandstone and the comparison with field TBM excavation performance[J]. Acta Geotechnica, 2019, 14(4): 1249-1268.
[13] XIA Y M, GUO B, TAN Q, et al. Comparisons between experimental and semi-theoretical cutting forces of CCS disc cutters[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1583-1597.
[14] NING B, XIA Y M, LIN L K, et al. Experimental study on the adaptability of cutters with different blade widths under hard rock and extremely hard rock conditions[J]. Acta Geotechnica, 2020, 15(11): 3283-3294.
[15] BALCI C, TUMAC D. Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2012, 30: 183-193.
[16] ENTACHER M, SCHULLER E, GALLER R. Rock failure and crack propagation beneath disc cutters[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1559-1572.
[17] SUN R X, MO J L, ZHANG M Q, et al. Interaction between partial-worn TBM cutters and rocks: experimental and numerical investigation[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(4): 111.
[18] 冀国栋, 付柏毅, 章慧健, 等. TBM滚刀贯入度对破岩效能的影响规律研究[J]. 铁道科学与工程学报, 2023, 20(12): 4755-4768. JI Guodong, FU Boyi, ZHANG Huijian, et al. Study on the influence law of TBM disc cutter penetration on the rock-breaking efficiency[J]. Journal of Railway Science and Engineering, 2023, 20(12): 4755-4768.
[19] COMAKLI R, BALCI C, COPUR H, et al. Experimental studies using a new portable linear rock cutting machine and verification for disc cutters[J]. Tunnelling and Underground Space Technology, 2021, 108: 103702.
[20] 贺飞, 张金良, 鲁义强, 等. 滚刀-高移速水射流耦合切削极硬花岗岩试验与模拟研究[J]. 中南大学学报(自然科学版), 2023, 54(3): 1187-1203. HE Fei, ZHANG Jinliang, LU Yiqiang, et al. Experimental and simulation study on cutting extremely hard granite by disc cutter-high velocity waterjet coupling[J]. Journal of Central South University(Science and Technology), 2023, 54(3): 1187-1203.
[21] 张蒙祺, 勾斌, 邓雨, 等. 新型TBM螺旋槽滚刀破岩性能及接触行为研究[J]. 机械工程学报, 2023, 59(5): 259-270. ZHANG Mengqi, GOU Bin, DENG Yu, et al. Study on rock breaking performance and contact behavior of new TBM spiral groove cutter[J]. Journal of Mechanical Engineering, 2023, 59(5): 259-270.
[22] DICKEY D A, FULLER W A. Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American statistical association, 1979, 74(366a): 427-431.
[23] PHILLIPS P C B, PERRON P. Testing for a unit root in time series regression[J]. Biometrika, 1988, 75(2): 335-346.
[1] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[2] 施雪松,管清正,王文扬,许振浩,林鹏,王孝特,刘洁. 双节理岩体TBM滚刀破岩过程数值模拟[J]. 山东大学学报 (工学版), 2020, 50(4): 70-79.
[3] 杨明, 杜萍静, 刘凤全, 郝旭鹏, 孛一凡. 能源消费发展及预测方法综述[J]. 山东大学学报 (工学版), 2020, 50(1): 56-62.
[4] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[5] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[6] 陈恩瑜,邓思文,陈方明,马池帅. 一种基于TBM掘进参数的现场岩石强度快速估算模型[J]. 山东大学学报(工学版), 2017, 47(2): 7-13.
[7] 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47.
[8] 朱全银1,严云洋1,周培1,谷天峰2. 一种线性插补与自适应滑动窗口价格预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 53-58.
[9] 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11.
[10] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1-5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!