您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 30-40.doi: 10.6040/j.issn.1672-3961.0.2023.263

• 机器学习与数据挖掘 • 上一篇    

基于时变需求的异质网约车平台竞合行为分析

李嫚嫚1,孙加辉2,付颖斌1*,凃强3   

  1. 1.长安大学汽车学院, 陕西 西安 710061;2.西安航天动力试验技术研究所, 陕西 西安 710100;3.重庆交通大学交通运输学院, 重庆 400074
  • 发布日期:2025-02-20
  • 作者简介:李嫚嫚(1991— ),女,陕西咸阳人,讲师,硕士生导师,博士,主要研究方向为交通运输系统建模与优化. E-mail: limanman@chd.edu.cn. *通信作者简介:付颖斌(1982— ),男,陕西西安人,讲师,博士,主要研究方向为交通运输系统建模与优化. E-mail: fu.yingbin@chd.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划资助项目(2021JQ-263,2023-JC-QN-0526);重庆市社会科学规划项目(2022BS082);重庆市教委科学技术研究项目(KJQN202100715)

Coopetition behaviors analysis of heterogeneous ride-sourcing platforms based on time-varying demand

LI Manman1, SUN Jiahui2, FU Yingbin1*, TU Qiang3   

  1. 1. School of Automobile, Chang'an University, Xi'an 710061, Shaanxi, China;
    2. Xi'an Aerospace Propulsion Test Technique Institute, Xi'an 710100, Shaanxi, China;
    3. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Published:2025-02-20

摘要: 为明晰异质网约车平台竞合行为,以利他因子连续量化平台合作意愿,考虑网约车需求的时变特性,基于时空网络构建异质平台竞合均衡模型,描述异质平台竞合行为与其收益的耦合关系。根据模型的非线性特征,以利他因子、司机工资率以及出行服务价格为局部搜索对象,设计迭代局部搜索算法求解模型,解析异质平台竞合行为。通过算例分析发现,迭代局部搜索算法的求解性能优于遗传算法,且能够识别出好解特征;轻资产平台单方面将利他因子从0增加到1,系统总收益降低,而重资产平台单方面将利他因子从0增加到1,系统总收益提高;网约车需求量和时变特性都会影响异质平台竞合行为;轻资产平台利他因子会随网约车需求的增加从0变为1。

关键词: 网约车, 竞合博弈, 时变需求, 利他因子, 迭代局部搜索算法

中图分类号: 

  • TP182
[1] 陈喜群. 网约共享出行研究综述[J]. 交通运输系统工程与信息, 2021, 21(5): 77-90. CHEN Xiqun. Review of app-based ridesharing mobility research[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 77-90.
[2] ZHAO Meng, LI Bin, REN Jiali, et al. Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers' green preference under peak carbon dioxide emissions[J]. International Journal of Production Economics, 2023, 255: 108679.
[3] 王家顺, 李枝勇, 窦润亮, 等. 竞争市场中网约车平台开放策略研究[J]. 系统工程理论与实践, 2022, 42(7): 1884-1899. WANG Jiashun, LI Zhiyong, DOU Runliang, et al. Opening strategies for ride-hailing platforms in competitive market[J]. Systems Engineering-Theory & Practice, 2022, 42(7): 1884-1899.
[4] GAO Guoju, XIAO Mingjun, ZHAO Zhenhua. Optimal multi-taxi dispatch for mobile taxi-hailing systems[C] // 45th International Conference on Parallel Processing. Philadelphia, USA: IEEE, 2016: 294-303.
[5] YANG Hai, QIN Xiaoren, KE Jintao, et al. Optimizing matching time interval and matching radius in on-demand ride-sourcing markets[J]. Transportation Research Part B: Methodological, 2020, 131: 84-105.
[6] LIU Jiangtao, MICHANDANI Pitu, ZHOU Xuesong. Integrated vehicle assignment and routing for system-optimal shared mobility planning with endogenous road congestion[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102675.
[7] ODA Takuma, JOE-WONG Carlee. MOVI: a model-free approach to dynamic fleet management[C] //IEEE Conference on Computer Communications. Honolulu, USA: IEEE, 2018: 2708-2716.
[8] WANG Xiaolei, HE Fang, YANG Hai, et al. Pricing strategies for a taxi-hailing platform[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 93: 212-231.
[9] CHEN Xiqun, ZHENG Hongyu, KE Jintao, et al. Dynamic optimization strategies for on-demand ride services platform: surge pricing, commission rate, and incentives[J]. Transportation Research Part B: Methodological, 2020, 138: 23-45.
[10] LEI Zengxiang, UKKUSURI Satish. Scalable reinfor-cement learning approaches for dynamic pricing in ride-hailing systems[J]. Transportation Research Part B: Methodological, 2023, 178: 102848.
[11] MA Jia, XU Min, MENG Qiang, et al. Ridesharing user equilibrium problem under OD-based surge pricing strategy[J]. Transportation Research Part B: Method-ological, 2020, 134: 1-24.
[12] MO Dong, YU Jingru, CHEN Xiqun. Modeling and managing heterogeneous ride-sourcing platforms with government subsidies on electric vehicles[J]. Transportation Research Part B: Methodological, 2020, 139: 447-472.
[13] NI Linglin, CHEN Chuqiao, WANG Xiaokun, et al. Modeling network equilibrium of competitive ride-sourcing market with heterogeneous transportation network companies[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 407-424.
[14] 蒋阳升, 张俊, 胡路. 大规模场景下网约车与城市交通拥堵交互影响仿真研究[J]. 系统工程理论与实践, 2022, 42(11): 3079-3089. JIANG Yangsheng, ZHANG Jun, HU Lu. Large-scale simulation for the interaction effect of ride-sourcing and urban congestion[J]. Systems Engineering-Theory & Practice, 2022, 42(11): 3079-3089.
[15] 黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25(2): 311-323. HUANG Xin, MAO Zhengyuan. Prediction of passenger demand for online car-hailing based on spatio-temporal multi-graph convolution network[J]. Journal of Geo-information Science, 2023, 25(2): 311-323.
[16] 蒋岚翔. 基于互利的发电和售电交易主体竞合均衡分析及优化策略研究[D]. 贵阳: 贵州大学, 2020. JIANG Lanxiang. Coopetition equilibrium analysis and research on optimization strategy of power generators and sellers based on mutual benefit[D]. Guiyang: Guizhou University, 2020.
[17] JOZEFOWIEZA Nicolas, SEMETB Frederic, TALBIA Elghazali. Multi-objective vehicle routing problems[J]. European Journal of Operational Research, 2008, 189(2): 293-309.
[18] 刘明明, 崔春风, 童小娇, 等. 混合整数非线性规划的算法软件及最新进展[J]. 中国科学:数学, 2016, 46(1): 1-20. LIU Mingming, CUI Chunfeng, TONG Xiaojiao, et al. Algorithms, softwares and recent developments of mixed integer nonlinear programming[J]. Scientia Sinic: Mathematica, 2016, 46(1): 1-20.
[19] LI Zixiang, KUCUKKOC Ibrahim, ZHANG Zikai. Iterated local search method and mathematical model for sequence-dependent U-shaped disassembly line balancing problem[J]. Computers & Industrial Engineering, 2019, 66: 106056.
[20] SHI Jungang, YANG Jing, YANG Lixing, et al. Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 175: 103136.
[21] JORGE Diana, MOLNAR Goran, CORREIA Goncalo Homem de Almeida. Trip pricing of one-way station-based carsharing networks with zone and time of day price variations[J]. Transportation Research Part B: Methodological, 2015, 81: 461-482.
[1] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
Viewed
Full text
53
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 53

  From local
  Times 53
  Rate 100%

Abstract
69
Just accepted Online first Issue
0 0 69
  From Others local
  Times 68 1
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!