您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 147-155.doi: 10.6040/j.issn.1672-3961.0.2023.210

• 电气工程 • 上一篇    

基于AMSChOA的MPRM电路面积优化

张梦雨1,2,何振学1,2*,赵晓君1,2,王浩然3,肖利民4,王翔5   

  1. 1.河北农业大学智能农业装备研究院, 河北 保定 071001;2.河北农业大学河北省农业大数据重点实验室, 河北 保定 071001;3.河北农业大学林学院, 河北 保定 071001;4.北京航空航天大学计算机学院, 北京 100191;5.北京航空航天大学电子信息工程学院, 北京 100191
  • 发布日期:2024-12-26
  • 作者简介:张梦雨(2000— ),女,河南郑州人,硕士研究生,主要研究方向为RM电路智能优化. E-mail: 20222060110@pgs.hebau.edu.cn. *通信作者简介:何振学(1987— ),男,山东泰安人,副教授,博士生导师,博士,主要研究方向为智能优化算法、最优化理论、电子设计自动化. E-mail:hezhenxue@buaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62102130);中央引导地方科技发展资金资助项目(226Z0201G);河北省自然科学基金资助项目(F2020204003);河北省青年拔尖人才计划资助项目(BJ2019008);河北省高等学校科学技术研究资助项目(QN2022138);河北省省属高等学校基本科研业务费研究资助项目(KY2022073)

Area optimization for MPRM circuits based on AMSChOA

ZHANG Mengyu1,2, HE Zhenxue1,2*, ZHAO Xiaojun1,2, WANG Haoran3, XIAO Limin4, WANG Xiang5   

  1. 1. Intelligent Agricultural Equipment Research Institute, Hebei Agricultural University, Baoding 071001, Hebei, China;
    2. Key Laboratory of Agricultural Big Data of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, China;
    3. College of Forestry, Hebei Agricultural University, Baoding 071001, Hebei, China;
    4. School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
    5. School of Electronic Information Engineering, Beihang University, Beijing 100191, China
  • Published:2024-12-26

摘要: 为解决现有基于同或/或(XNOR/OR)的混合极性Reed-Muller(mixed polarity Reed-Muller, MPRM)电路面积优化方法中存在的收敛速度较慢、不容易跳出局部最优等问题,提出一种基于自适应多策略选择黑猩猩优化算法(adaptive multi-strategy selection chimp optimization algorithm, AMSChOA)的MPRM电路面积优化方法。AMSChOA使用柯西变异、螺旋搜索、随机搜索和翻筋斗策略在4个最优黑猩猩附近进行搜索,扩大算法的搜索范围。针对其他黑猩猩个体加入动态学习因子策略,动态学习4个最优黑猩猩位置,加快算法跳出局部最优。利用提出的AMSChOA对基于XNOR/OR的MPRM电路进行面积优化,搜索电路面积最小时对应的MPRM电路。基于北卡罗来纳微电子中心(Microelectronics Center of North Carolina, MCNC)基准测试电路的试验结果表明,本研究提出的方法有效,与基于传统黑猩猩优化算法、粒子群算法、改进粒子群算法的MPRM电路面积优化方法相比,最高面积优化率为68.09%,平均优化率为41.24%。

关键词: MPRM面积优化, 自适应多策略选择黑猩猩优化算法, 混合极性Reed-Muller, 动态学习因子, 组合优化问题

中图分类号: 

  • V443
[1] 周宇豪, 何振学, 梁新艺,等. 基于BABFA的XNOR/OR电路面积优化[J]. 北京航空航天大学学报, 2022, 48(10): 2031-2039. ZHOU Yuhao, HE Zhenxue, LIANG Xinyi, et al. Optimization of XNOR/OR circuit area based on BABFA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2031-2039.
[2] ZHOU Y H, HE Z X, JIANG J H, et al. Fast area optimization approach for XNOR/OR-based fixed polarity Reed-Muller logic circuits based on multi-strategy wolf pack algorithm[J]. ACM Transactions on Design Automation of Electronic Systems, 2023, 28(3): 1-16.
[3] 刘庆鑫, 齐琦, 贾鹤鸣, 等. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报(工学版), 2023, 53(4): 93-103. LIU Qingxin, QI Qi, JIA Heming, et al. Aquila optimizer based on hybrid improved strategies[J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 93-103.
[4] HE Z X, PAN Y H, WANG K J, et al. Area optimization for MPRM logic circuits based on improved multiple disturbances fireworks algorithm[J]. Applied Mathematics & Computation, 2021, 399: 126008.
[5] 黄华娟, 程前, 韦修喜, 等. 融合Jaya高斯变异的自适应乌鸦搜索算法[J]. 山东大学学报(工学版), 2023, 53(2): 11-22. HUANG Huajuan, CHENG Qian, WEI Xiuxi, et al. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation[J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22.
[6] 何俊才, 何振学, 王福顺,等. 基于ERWOA的多输出MPRM电路面积优化[J]. 北京航空航天大学学报, 2023, 49(5): 1193-1200. HE Juncai, HE Zhenxue, WANG Fushun, et al. Circuit area optimization of multi-output MPRM based on ERWOA algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1193-1200.
[7] 俞海珍, 蒋志迪, 汪鹏君,等. GA-DTPSO算法及其在混合极性XNOR/OR电路面积优化中应用[J]. 计算机辅助设计与图形学学报, 2015, 27(5): 946-952. YU Haizhen, JIANG Zhidi, WANG Pengjun, et al. GA-DTPSO algorithm and its application in area optimization of mixed polarity XNOR/OR circuits[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(5): 946-952.
[8] KHISHE M, MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications, 2020, 149: 113338.
[9] DU N T, LUO Q F, DU Y Q, et al. Colorimage enhancement: a metaheuristic chimp optimization algorithm[J]. Neural Processing Letters, 2022, 54(6): 4769-4808.
[10] PASHAEI Elnaz, PASHAEI Elham. An efficient binary chimp optimization algorithm for feature selection in biomedical data classification[J]. Neural Computing and Applications, 2022, 34: 6427-6451.
[11] SARA K, ABDOLAH C. Chimp optimization algorithm to optimize a convolutional neural network for recognizing Persian/Arabic handwritten words[J]. Mathematical Problems in Engineering, 2022, 2022: 4894922.
[12] YANG C, SU C, HU H T, et al. Performance optimization of photovoltaic and solar cells via a hybrid and efficient chimp algorithm[J]. Solar Energy, 2023, 253: 343-359.
[13] 季雨瑄, 叶军, 杨震宇, 等. 结合分辨矩阵改进的邻域粗糙集属性约简算法[J]. 山东大学学报(工学版), 2022, 52(4): 99-109. JI Yuxuan, YE Jun, YANG Zhenyu, et al. An improved neighborhood rough set attribute reduction algorithm combined with resolution matrix[J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 99-109.
[14] 宁春梅, 孙博, 肖敬先, 等.基于时间感知注意力机制的混合编码网络方法[J]. 山东大学学报(工学版), 2022, 52(2): 23-30. NING Chunmei, SUN Bo, XIAO Jingxian, et al. The method of hybrid code networks based on time-aware attention mechanism[J]. Journal of Shandong University(Engineering Science), 2022, 52(2): 23-30.
[15] VERDU S. The Cauchydistribution in information theory[J]. Entropy, 2023, 5(2): 346.
[16] DOS SANTOS M A F, MENON JR L, ANTENEODO C. Efficiency of random search with space-dependent diffusivity[J]. Physical Review E, 2022, 106(4): 044113.
[17] GENG J Q, SUN X M, WANG, H H, et al. A modified adaptive sparrow search algorithm based on chaotic reverse learning and spiral search for global optimization[J]. Neural Computing and Applications, 2023, 35: 24603-24620.
[18] ZHAO R Q, TANG W S. Monkeyalgorithm for global numerical optimization[J]. Journal of Uncertain Systems, 2008, 2(3): 165-176.
[19] ABOLFZLI A, BRECHMANN A, WOLFF S, et al. Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment[J]. Scientific Reports, 2020, 10(1): 6548.
[20] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN'95-International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948.
[21] TIAN D P, SHI Z Z. MPSO: modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49-68.
[1] 戴红伟, 杨玉, 仲兆满, 李存华. 改进量子交叉免疫克隆算法及其应用[J]. 山东大学学报(工学版), 2015, 45(2): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!