您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 83-91.doi: 10.6040/j.issn.1672-3961.0.2023.072

• 土木工程 • 上一篇    

径向声子晶体地铁道床隔振性能

厉超1,庄培芝2*,张思峰1,陈诚3,李林千4   

  1. 1.山东建筑大学交通工程学院, 山东 济南 250101;2.山东大学齐鲁交通学院, 山东 济南 250002;3.广东广州地铁设计研究院股份有限公司, 山东 济南 250014;4.山东英格利实业有限公司, 山东 济南 250100
  • 发布日期:2023-10-19
  • 作者简介:厉超(1990— ),男,山东日照人,副研究员,硕士生导师,博士,主要研究方向岩土动力学. E-mail:lichao21@sdjzu.edu.cn. *通信作者简介:庄培芝(1988— ),男,山东青岛人,教授,博士生导师,博士,主要研究方向岩土动力学. E-mail:zhuangpeizhi@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2022QE082)

Isolation performance of radial phononic crystal metro track bed

LI Chao1, ZHUANG Peizhi2*, ZHANG Sifeng1, CHEN Cheng3, LI Linqian4   

  1. 1.School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    3. Guangdong Guangzhou Metro Design and Research Institute Co., Ltd., Jinan 250014, Shandong, China;
    4. Shandong Yinggeli Industrial Co., Ltd., Jinan 250100, Shandong, China
  • Published:2023-10-19

摘要: 为解决地铁振动问题,提出一种径向声子晶体(radial phononic crystal, RPC)地铁道床及其减振计算方法,并对其隔振性能进行探讨分析。将笛卡尔坐标系下弹性波波动方程转化为柱坐标系下波动方程,结合有限元法与Bloch定理,提出RPC地铁道床能带结构计算方法,探究道床尺寸及材料参数对带隙的影响,并根据济南地铁4号线盾构隧道建立隧道-衬砌-土体三维有限元仿真模型,分析了RPC地铁道床的实际隔振性能。结果表明:RPC地铁道床具有宽频带隙特性,其产生机理为2种材料的耦合共振作用,利用该特性可实现地铁隔振;晶格常数增大,带隙起始和截止频率均降低,带隙宽度减小;橡胶垫置换率增大,带隙起始和截止频率均降低,带隙宽度减小;橡胶垫弹性模量增大,带隙起始和截止频率均上升,且带隙宽度增大;RPC地铁道床在频率200 Hz以下范围内具有良好的隔振性能,地表处分频振级最大差值可达37 dB。

关键词: 地铁道床, 径向声子晶体, 隔振性能, 能带结构, 带隙特性

中图分类号: 

  • TU470
[1] 闫维明, 聂晗, 任珉, 等. 地铁交通引起的环境振动的实测与分析[J]. 地震工程与工程振动, 2006, 32(4): 187-191. YAN Weiming, NIE Han, REN Min, et al. In situ experiment and analysis of environmental vibration induced by urban subway transit[J]. Earthquake Engineering and Engineering Vibration, 2006, 32(4): 187-191.
[2] PU X B, SHI Z F. Surface-wave attenuation by periodic pile barriers in layered soils[J]. Construction and Building Materials, 2018, 180: 177-187.
[3] 王辉. 地铁隧道内梯子式轨道的减振特性研究[D]. 北京: 北京交通大学, 2011. WANG Hui. Research on vibration reduction of ladder track in subway tunnel[D]. Beijing: Beijing Jiaotong University, 2011.
[4] 金浩, 刘维宁, 周顺华. 板下减振垫对橡胶浮置板轨道减振性能的影响[J]. 铁道科学与工程学报, 2016, 13(2): 245-249. JIN Hao, LIU Weining, ZHOU Shunhua. Dynamic analysis of rubber floating slab track with different supporting forms[J]. Journal of Railway Science and Engineering, 2016, 13(2): 245-249.
[5] 陈小平, 王平, 陈嵘. 弹性支承块式无砟轨道的减振机理[J]. 铁道学报, 2007, 13(5): 69-72. CHEN Xiaoping, WANG Ping, CHEN Rong. Damping vibration mechanism of the elastic bearing block track[J]. Journal of the China Railway Society, 2007, 13(5): 69-72.
[6] 韦凯, 成芳, 赵泽明, 等. 减振垫浮置板轨道减振效果评价方法研究[J]. 铁道科学与工程学报, 2022, 19(3): 656-664. WEI Kai, CHENG Fang, ZHAO Zeming, et al. Research on the evaluation method of vibration reduction effect of damping pad floating slab track[J]. Journal of Railway Science and Engineering, 2022, 19(3): 656-664.
[7] 郑翔, 罗信伟, 李平, 等. 市域快线预制钢弹簧浮置板轨道振动特性研究[J]. 振动工程学报, 2021, 34(5): 951-958. ZHENG Xiang, LUO Xinwei, LI Ping, et al. Vibration performance of a prefabricated steel-spring floating-slab track for urban express rail transit[J]. Journal of Vibration Engineering, 2021, 34(5): 951-958.
[8] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学, 2007, 37(9): 1126-1139. WEN Jihong, WANG Gang, YU Dianlong, et al. Vibration attenuation and band gap characteristics of phononic crystals[J]. Science in China, 2007, 37(9): 1126-1139.
[9] 温激鸿, 韩小云, 王刚, 等. 声子晶体研究概述[J]. 功能材料, 2003, 34(4): 364-367. WEN Jihong, HAN Xiaoyun, WANG Gang, et al. Review of phononic crystals[J]. Journal of Functional Materials, 2003, 34(4): 364-367.
[10] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[11] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025.
[12] WANG P, YI Q, ZHAO C Y, et al. Elastic wave propagation characteristics of periodic track structure in high-speed railway[J]. Journal of Vibration and Control, 2018, 25(3): 517-528.
[13] WANG P, YI Q, ZHAO C Y, et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms[J]. Archive of Applied Mechanics, 2017, 87(3): 503-519.
[14] 孟铎. 周期性轨道结构振动带隙特性及动力吸振器研究[D]. 成都: 西南交通大学, 2017. MENG Duo. Research on vibration band gaps properties of periodic track structures and dynamic vibration absorber[D]. Chengdu: Southwest Jiaotong University, 2017.
[15] 邢俊. 基于声子晶体的地铁轨道弹性垫层波阻单元设计研究[D]. 成都: 西南交通大学, 2017. XING Jun. Study on the design of wave-resistance units of subway track elastic pads based on phononic crystal[D]. Chengdu: Southwest Jiaotong University, 2017.
[16] SHENG X, ZHAO C Y, YI Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms[J]. Journal of Zhejiang University A Science, 2018, 19(9): 663-675.
[17] 农兴中, 李祥, 刘堂辉, 等. 浮置板下声子晶体隔振器带隙特性研究[J]. 西南交通大学学报, 2019, 54(6): 1203-1209. NONG Xingzhong, LI Xiang, LIU Tanghui, et al. Band gap characteristics of vibration isolators of phononic crystals under floating slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209.
[18] 缪林昌, 厉超, 雷利剑, 等. 周期性结构复合材料减振性状与工程应用前景[J]. 岩土工程学报, 2020, 42(6): 1139-1144. MIAO Linchang, LI Chao, LEI Lijian, et al. Vibration attenuation and application of composition materials of periodic structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1139-1144.
[19] LI C, ZHANG S F, LIU Q, et al. Low-frequency vibration control of metro slab track based on locally resonant theory[J]. KSCE Journal of Civil Engineering, 2022, 26(6): 2695-2706.
[20] MA T X, CHEN T N, WANG X P, et al. Band structures of bilayer radial phononic crystal plate with crystal gliding[J]. Journal of Applied Physics, 2014, 116(10): 104505.
[21] LI Y G, CHEN T N, WANG X P, et al. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations[J]. Journal of Applied Physics, 2014, 115(5): 54907.
[22] AN S W, SHU H S, LIANG S J, et al. Band gap characteristics of radial wave in a two-dimensional cylindrical shell with radial and circumferential periodicities[J]. AIP Advances, 2018, 8(3): 035110.
[23] CHENG Z B, SHI Z F. Vibration attenuation properties of periodic rubber concrete[J]. Construction and Building Materials, 2014, 50: 257-265.
[24] YEOH O H. Hardness and Young's modulus of rubber[J]. Plastics and Rubber Processing and Applications, 1984, 4(2): 141-144.
[1] 罗浩天,武科,厉雅萌,徐嘉祥,邢志豪. 波浪动荷载作用下吸力式桶形基础水平承载性能[J]. 山东大学学报 (工学版), 2021, 51(5): 100-106.
[2] 谢印标,罗浩天,厉雅萌,武科,杨涛,李国栋,杨洪娜. 吸力式桶形基础在砂土中循环荷载下的承载力特性[J]. 山东大学学报 (工学版), 2022, 52(4): 151-156.
[3] 谢海旭,肖世国. 铁路高填方箱型路堤结构计算方法[J]. 山东大学学报 (工学版), 2022, 52(4): 166-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!