您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 153-162.doi: 10.6040/j.issn.1672-3961.0.2022.352

• 土木工程 • 上一篇    

基于离散元的深海集矿车履带土体动态作用机理

刘钦1,刘磊1,张宁2*,赵红宇1,王哲1,黄坤鹏1   

  1. 1.长安大学建筑工程学院, 陕西 西安 710061;2.华北电力大学水利与水电工程学院, 北京 102206
  • 发布日期:2024-04-17
  • 作者简介:刘钦(1983— ),男,陕西山阳人,博士,副教授,主要研究方向为岩土与地下工程. E-mail:lq0719@163.com. *通信作者简介:张宁(1983— ),男,河南商丘人,副教授,硕士生导师,博士,主要研究方向为海洋岩土. E-mail:zning1125@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(U1906234)

Dynamic mechanism of tracked soil of deep-sea mining vehicle based on discrete element method

LIU Qin1, LIU Lei1, ZHANG Ning2*, ZHAO Hongyu1, WANG Zhe1, HUANG Kunpeng1   

  1. 1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China;
    2. School of Water Conservancy and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
  • Published:2024-04-17

摘要: 针对深海集矿车在软底质土上行驶困难的问题,配制模拟底质土进行直剪试验,通过离散元土体模拟压陷与剪切试验,验证离散元模拟底质土的可靠性。在此基础上构建履带-土体相互作用系统,在重心偏移下,分析集矿车履带接地长宽比和支重轮数对接地压力和土体沉降的影响。结果表明,随履带接地长宽比增大,偏心效应越显著,履带初始接地压力分布不均匀,履带整体沉降增大,但对履带梯形不均匀沉降形式无明显影响。支重轮数n≤3时,增加支重轮数可适当减小偏心效应,履带初始接地压力不均匀分布明显,履带整体沉降降低;n>3时,支重轮数变化对偏心效应影响较小,履带初始接地压力分布逐渐均匀,但对履带整体沉降无明显影响。不同履带接地长宽比与支重轮数的土体压陷关系近似符合Bekker压陷公式。

关键词: 深海履带式集矿车, 履带接地压力, 土体沉降, 压力沉降关系, Bekker压陷模型

中图分类号: 

  • P751
[1] SCHULTE E, HANDSCHUH R, SCHWARZ W. Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle[C] //Proceeding of the 5th ISOPE Ocean Mining Symposium. Tsukuba, Japan: The International Society of Offshore and Polar Engineers, 2003.
[2] 韩庆珏. 深海履带式集矿机打滑及路径跟踪控制问题研究[D].长沙:中南大学, 2014. HAN Qingjue. Study on skidding and path tracking control of deep-sea tracked miner[D].Changsha:Central South University, 2014.
[3] 吴鸿云,陈新明,刘少军,等. 履带板、齿间黏附底质对集矿机附着性能的影响[J]. 农业工程学报, 2010, 26(10): 140-145. WU Hongyun, CHEN Xinming, LIU Shaojun et al. Effects of track shoe and adhesion substrate between teeth on adhesion performance of miner[J]. Journal of Agricultural Engineering, 2010, 26(10): 140-145.
[4] CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
[5] FUJII H. Analysis of interaction between lunar terrain and treaded wheel by distinct element method[C] //Proceeding of the 14th International Conference of the International Society for Terrain-Vehicle Systems. Vicksburg, USA: ISTVS, 2002.
[6] KANAMORI H, AOKI S, NAKASHIMA H. Terramechanics of a micro lunar rover[M]. Missouri, USA: Engineering, Construction, and Operations in Challenging Environ-ments, 2004.
[7] ASAF Z, RUBINSTEIN D, SHMULEVICH I. Evaluation of link-track performances using DEM[J]. Journal of Terramechanics, 2006, 43(2): 141-161.
[8] 孙鹏,高峰,姚圣卓,等. 轮式月面巡视探测器月面牵引性能的预测[J]. 吉林大学学报(工学版), 2010, 40(4): 925-930. SUN Peng, GAO Feng, YAO Shengzhuo, et al. Prediction of lunar traction performance of wheeled lunar rover[J]. Journal of Jilin University( Engineering Edition ), 2010, 40(4):925-930.
[9] 李小艳,程阳锐,郑皓,等. 新一代海底履带式集矿车“鲲龙500”行走性能分析[J]. 矿冶工程, 2020, 40(5): 1-4. LI Xiaoyan, CHENG Yangrui, ZHENG Hao, et al. Walking performance analysis of the new generation of submarine tracked mining vehicle Kunlong 500[J]. Mining and Metallurgy Engineering, 2020, 40(5):1-4.
[10] 戴瑜. 履带式集矿机海底行走的单刚体建模研究与仿真分析[D].长沙:中南大学, 2010. DAI Yu. Single rigid body modeling research and simulation analysis of crawler miner's seabed walking[D].Changsha: Central South University, 2010.
[11] 王江营,曹文贵,翟友成. 深海沉积物与履带相互作用试验研究[J].岩土力学, 2011, 32(增刊2): 274-278. WANG Jiangying, CAO Wengui, ZHAI Youcheng. Experimental study on the interaction between deep-sea sediments and tracks[J].Geomechanics, 2011, 32(Suppl.2):274-278.
[12] 李力,吕敬科. 基于颗粒流理论的深海沉积物剪切特性模拟研究[J].矿冶工程, 2017, 37(6): 1-6. LI Li, L(¨overU)Jingke. Simulation study on shear characteristics of deep-sea sediments based on particle flow theory[J]. Mining and Metallurgy Engineering, 2017, 37(6):1-6.
[13] 于彦江,段隆臣,王海峰,等. 西太平洋深海沉积物的物理力学性质初探[J].矿冶工程, 2016, 36(5): 1-4. YU Yanjiang, DUAN Longchen, WANG Haifeng, et al. Preliminary study on physical and mechanical properties of deep-sea sediments in the western Pacific[J]. Mining and Metallurgy Engineering, 2016, 36(5):1-4.
[14] 曾谊晖. 履带式集矿车软底质行走行为及模拟试验系统研究[D]. 长沙: 中南大学, 2013. ZENG Yihui. Study on soft sediment walking behavior and simulation test system of tracked mining vehicle[D]. Changsha: Central South University, 2013.
[15] 李力, 李庶林. 深海表层海泥模拟及地面力学特性研究[J]. 工程力学, 2010, 27(11):213-220. LI Li, LI Shulin. Study on simulation of deep-sea surface mud and ground mechanical properties[J]. Engineering mechanics, 2010, 27(11):213-220.
[16] 张克健. 车辆地面力学[M]. 北京: 国防工业出版社, 2002. ZHANG Kejian. Vehicle ground mechanics[M]. Beijing: National Defense Industry Press, 2002.
[17] WONG J Y, PRESTON-THOMAS J. On thc characteristics ofthe shearstress-displacementrelationship of terrain[J]. Journal of Terramechanics, 1983, 19(4): 225-234.
[1] 董新宇,陈瀚阅,李家国,孟庆岩,邢世和,张黎明. 基于多方法融合的非监督彩色图像分割[J]. 山东大学学报 (工学版), 2019, 49(2): 96-101.
[2] 肖乔, 裴继红, 王荔霞, 龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报(工学版), 0, (): 29-35.
[3] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27-32.
[4] 肖乔,裴继红,王荔霞,龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报 (工学版), 2015, 45(5): 29-35.
[5] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!