您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 103-111.doi: 10.6040/j.issn.1672-3961.0.2022.261

• 土木工程 • 上一篇    

基于有限差分的岩体破裂非连续变形及水力弱化效应表征方法

陈云娟1,敬艺2*,贾润枝3,4,王军1,杨卓3,4,罗平利3,4   

  1. 1.山东建筑大学建筑结构加固改造与地下空间工程教育部重点实验室, 山东 济南 250101;2.山东大学齐鲁交通学院, 山东 济南 250061;3.中化学交通建设集团有限公司, 山东 济南 250102;4.山东省公路工程技术研究中心有限公司, 山东 济南 250102
  • 发布日期:2023-10-19
  • 作者简介:陈云娟(1984— ),女,山东潍坊人,副教授,硕士生导师,博士,主要研究方向为岩土工程、城市地工空间稳定性等方面的研究. E-mail: chenyunjuan@sdjzu.edu.cn. *通信作者简介:敬艺(1995— ),女,山东泰安人,助理研究员,硕士,主要研究方向为地下工程防灾减灾等方向的研究. E-mail:jing1hay@163.com
  • 基金资助:
    国家自然科学基金资助项目(42172310);山东省自然科学基金资助项目(ZR2022ME060);山东省青创科技支持计划资助项目(2019KJG015)

Representation of discontinuous deformation and hydraulic weakening effect of rock masses failure based on finite difference method

CHEN Yunjuan1, JING Yi2*, JIA Runzhi3,4, WANG Jun1, YANG Zhuo3,4, LUO Pingli3,4   

  1. 1. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering(Shandong Jianzhu University), Ministry of Education, Jinan 250101, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China;
    3. China National Chemical Communications Construction Group Co., Ltd., Jinan 250102, China;
    4. Shandong Highway Engineering Technology Research Center Co., Ltd., Jinan 250102, Shandong, China
  • Published:2023-10-19

摘要: 针对有限差分方法在研究岩体非连续变形和水力弱化参数方面的弊端,将屈服状态的岩体单元设置为空单元,使其不再参与计算,实现非连续变形的表征特点。通过分析拟合得到岩体参数随水压增加的弱化关系,重新定义柔度张量,嵌入弱化参数,修正并开发了水力弱化本构模型、屈服函数以及流动法则。基于提出的改进方法,分析岩体压缩条件下的非连续表征特性、各阶段变形特性以及强度影响规律等,模拟结果与已有文献中试验结果吻合度较高,验证了方法的有效性。

关键词: 有限差分, 岩体破裂, 非连续表征, 水力弱化, 本构开发

中图分类号: 

  • TU452
[1] 夏英杰,孟庆坤,唐春安,等. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49. XIA Yingjie, MENG Qingkun, TANG Chun'an, et al. Applications of realistic failure process analysis in tunnel engineering disaster simulation[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 36-49.
[2] 侯福金, 张丽, 蒋庆, 等. 基于CDEM的层状节理隔水岩柱水压致裂特性研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 76-84. HOU Fujin, ZHANG Li, JIANG Qing, et al. Hydraulic fracturing characteristics of water resisting rock mass with layered joints based on CDEM[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 36-49.
[3] 施雪松, 管清正, 王文扬, 等. 双节理岩体TBM滚刀破岩过程数值模拟[J]. 山东大学学报(工学版), 2020, 50(4): 70-79. SHI Xuesong, GUAN Qingzheng, WANG Wenyang, et al. Numerical simulation of rock fragmentation process by TBM cutter in double-joint rock mass[J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 70-79.
[4] LEI Qinghua, GAO Ke. A numerical study of stress variability in heterogeneous fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 121-133.
[5] LEI Qinghua, LATHAM Johnpaul, TSANG Chinfu. The use of discrete fracture networks for modeling coupled geomechanical and hydrological behavior of fractured rock[J]. Computers and Geotechnics, 2017, 85: 151-176.
[6] SUN Keming, ZHANG Shucui, XIN Liwei. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation[J]. Natural Gas Industry, 2016, 36(2): 45-51.
[7] 王超. 缝洞型碳酸盐岩油藏溶洞垮塌机制与裂缝扩展规律分析研究[D]. 济南: 山东大学, 2017: 75-116. WANG Chao. Study on cave collapse mechanism and crack propagation law of fractured-vuggy crabonate oil reservoirs[D]. Jinan: Shandong University, 2017: 75-116.
[8] 门晓溪, 唐春安, 李宏, 等. 单裂隙岩体水力裂缝扩展机理的数值模拟[J]. 应用力学学报, 2014, 31(2): 261-265. MEM Xiaoxi, TANG Chun'an, LI Hong, et al. Numerical simulation on propagation mechanism of hydraulic fracture on fractured rock mass[J]. Chinese Journal of Applied Mechanics, 2014, 31(2): 261-265.
[9] 杨韬. 岩石破裂过程渗流特性的数值分析方法[D]. 大连: 大连理工大学, 2019: 76-97. YANG Tao. Numerical study method of seepage characteristics in rock damage process[D]. Dalian: Dalian University of Technology, 2019: 76-97.
[10] ABUAISHA Murad, EATON David, PRIEST Jeffrey, et al. Hydro-mechanically coupled FDEM framework to investigate near-wellbore hydraulic fracturing in homogeneous and fractured rock formations[J]. Journal of Petroleum Science and Engineering, 2017, 154: 100-113.
[11] 林春, 俞缙, 陈旭, 等. 水力耦合条件下预制节理砂岩裂纹扩展和能量演化细观数值模拟[J]. 华侨大学学报(自然科学版), 2018, 39(4): 538-544. LIN Chun, YU Jin, CHEN Xu, et al. Mesoscopic numerical simulation on crack expansion and energy evolution of sandstone with prefabricated joint under hydro-mechanical coupling condition[J]. Journal of Huaqiao University(Natural Science), 2018, 39(4): 538-544.
[12] 刘晓丽, 林鹏, 韩国锋, 等. 裂隙岩质边坡渗流与非连续变形耦合过程分析[J]. 岩石力学与工程学报, 2013, 32(6): 1248-1256. LIU Xiaoli, LIN Peng, HAN Guofeng, et al. Hydro-mechanical coupling process on rock slope stability based on discontinuous deformation analysis and discrete fracture network models[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1248-1256.
[13] LIN Peng, LIU Xiaoli, HU Senying, et al. Large deformation analysis of a high steep slope relating to the Laxiwa reservoir, China[J]. Rock Mechanics and Rock Engineering, 2016, 49(6): 1-24.
[14] CHOO Lingqian, ZHAO Zhiye, CHEN Huimei, et al. Hydraulic fracturing modeling using the discontinuous deformation analysis(DDA)method[J]. Computers and Geotechnics, 2016, 76: 12-22.
[15] JIAO Yuyong, HUANG Ganghai, ZHAO Zhiye, et al. An improved three-dimensional spherical DDA model for simulating rock failure[J]. Science China & Technological Sciences, 2015, 58(9): 1533-1541.
[16] JIAO Yuyong, ZHANG Huanqiang, ZHANG Xiuli, et al. A two-dimensional coupled hydromechanical discontinuum model for simulation rock hydraulic fracturing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 39(5): 457-481.
[17] 平扬, 郑少河, 白世伟. 考虑渗透压力的裂隙岩体断裂损伤本构模型研究[C] //中国岩石力学与工程学会第六次学术大会论文集. 北京: 中国科学技术出版社, 2000: 147-149. PING Yang, ZHENG Shaohe, BAI Shiwei. Study on the fracture damage constitutive model of fracture rock mass considering seepage pressure[C] //Proceedings of the sixth Conference of Chinese Society of Rock Mechanics and Engineering. Beijing: China Science & Technology Press, 2000: 147-149.
[18] 张卫东. 含水裂隙岩体本构模型及数值模拟研究[D]. 厦门: 华侨大学, 2017: 13-53. ZHANG Weidong. Research on constitutive model and numerical simulation of water bearing fractured rock mass[D]. Xiamen: Huaqiao University, 2017: 13-53.
[19] 李新平, 朱维申. 多裂隙岩体的损伤断裂分析及工程应用[J]. 岩土工程学报, 1992,14(4):1-8. LI Xinping, ZHU Weishen. The damage fracture analysis of jointed rock mass and its application in engineering[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(4):1-8.
[20] 赵光明, 王昆, 王超, 等. 含裂隙水围岩巷道变形破坏数值模拟[J]. 地下空间与工程学报, 2017, 13(4): 1080-1087. ZHAO Guangming, WANG Kun, WANG Chao, et al. Numerical simulation on rock deformation and damage of roadway contained by the fissure water[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 1080-1087.
[21] 柴红保, 曹平, 赵延林, 等. 裂隙岩体损伤演化本构模型的实现及应用[J]. 岩土工程学报, 2010, 32(7): 1047-1053. CHAI Hongbao, CAO Ping, ZHAO Yanlin, et al. Implementation and application of constitutive model for damage evolution of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1047-1053.
[22] 陈斌. 孔隙压力对岩石的损伤作用研究[D]. 徐州: 中国矿业大学, 2020: 19-46. CHEN Bin. The damage effect of pore pressure on rock[D]. Xuzhou: China University of Mining Technology, 2020: 19-46.
[1] 杨文东1,张强勇1*,宋萌勃2,杨佳1. 基于破坏接近度和强度折减法的边坡稳定性评价[J]. 山东大学学报(工学版), 2010, 40(6): 82-87.
[2] 吴世林 肖书安. 隧道地震成像理论与应用案例[J]. 山东大学学报(工学版), 2009, 39(5): 96-100.
[3] 贾超,赵建宇,徐帮树,岳长城,李树忱 . 清水隧道围岩软土振动液化研究[J]. 山东大学学报(工学版), 2008, 38(1): 83-87 .
[4] 姚占勇 . 黄泛区公路地基压实标准的研究[J]. 山东大学学报(工学版), 2007, 37(6): 79-82 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!