山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (2): 128-134.doi: 10.6040/j.issn.1672-3961.0.2021.548
• • 上一篇
张琦,王莹洁*
ZHANG Qi, WANG Yingjie*
摘要: 采用长期激励模型应对时空众包下的工人激励问题,提出一种基于博弈论的长期激励算法(multi-stage compound selection, MSCS)。工人的激励模型考虑用户对任务的兴趣、任务奖励和对长期参与的参与度3部分内容,利用激励模型对工人进行长期激励。通过计算用户参与众包过程的最佳次数,制定对用户的个性化激励策略。采用用户的数量和最大平均参与度与其他长期激励算法以及基线算法进行对比分析。试验结果证明,MSCS算法在相同预算下能够激励更多的用户参与众包过程,在预算不足的情况下也能吸引用户更长时间的参与众包过程。MSCS算法具有更好的长期激励效果。
中图分类号:
[1] CAI Zhipeng, HE Zaobo, GUAN Xin, et al. Collective data-sanitization for preventing sensitive information inference attacks in social networks[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 15(4): 577-590. [2] WANG Yingjie, GAO Yang, LI Yingshu, et al. A worker-selection incentive mechanism for optimizing platform-centric mobile crowdsourcing systems[J]. Computer Networks, 2020, 171: 107144. [3] CAI Zhipeng, ZHENG Xu. A private and efficient mechanism for data uploading in smart cyber-physical systems[J]. IEEE Transactions on Network Science and Engineering(TNSE), 2020, 7(2): 766-775. [4] SUN Zice, WANG Yingjie, CAI Zhipeng, et al. A two-stage privacy protection mechanism based on blockchain in mobile crowdsourcing[J]. International Journal of Intelligent Systems, 2021, 36(5):2058-2080. [5] ZHANG Yonglong, QIN Haiyan, LI Bin, et al. Truthful mechanism for crowdsourcing task assignment[J]. Tsinghua Science and Technology,2018, 23(6): 645-659. [6] HU Ying, WANG Yingjie, LI Yingshu, et al. An incentive mechanism in mobile crowdsourcing based on multi-attribute reverse auctions[J]. Sensors, 2018, 18(10): 3453. [7] CAI, Zhipeng, DUAN Zhuojun, LI Wei. Exploiting multi-dimensional task diversity in distributed auctions for mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2020, 20(8):2576-2591. [8] ZHOU Huan, CHEN Xin, HE Shibo, et al. DRAIM: A novel delay-constraint and reverse auction-based incentive mechanism for WiFi offloading[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(4): 711-722. [9] WANG Yingjie, LI Yingshu, CHI Zhongyang, et al. The truthful evolution and incentive for large-scale mobile crowd sensing networks[J]. IEEE Access, 2018, 6:51187-51199. [10] ZHANG Xiang, XUE Guoliang, YU Ruozhou, et al. Keep your promise: mechanism design against free-riding and false-reporting in crowdsourcing[J]. IEEE Internet of Things Journal, 2017, 2: 562-572. [11] SAMAD Saadatmand, KANHERE Salil S. MRA: A modified reverse auction-based framework for incentive mechanisms in mobile crowdsensing systems[J]. Computer Communications, 2019, 145: 137-145. [12] GAO L, HOU F, HUANG J. Providing long-term participation incentive in participatory sensing[C] //Proceddings of IEEE Conference on Computer Communications. Hong Kong, China: IEEE, 2015. [13] GAO Liping, JIN Tao, LU Chao. A long-term quality perception incentive strategy for crowdsourcing environments with budget constraints[J]. International Journal of Cooperative Information Systems, 2019, 29(1-2): 2040005. [14] LUO Tie, SALIL S Kanhere, SAJAL K Das, et al. Incentive mechanism design for heterogeneous crowdsourcing using all-pay contests[J]. IEEE Transactions on Mobile Computing, 2015, 15(9): 2234-2246. [15] WU Weiwei, WANG Wanyuan, LI Minming, et al. Incentive mechanism design to meet task criteria in crowdsourcing: how to determine your budget[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(2): 502-516. [16] ZHENG Xu, CAI Zhipeng. Privacy-preserved data sharing towards multiple parties in industrial IoTs[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 968-979. [17] LIU Tianen, WANG Yingjie, LI Yingshu, et al. Privacy protection based on stream cipher for spatio-temporal data in IoT[J]. IEEE Internet of Things Journal, 2020, 7(9): 7928-7940. [18] WANG Yingjie, CAI Zhipeng, ZHAN Zhihui, et al. Walrasian equilibrium-based multi-objective optimization for task allocation in mobile crowdsourcing[J]. IEEE Transactions on Computational Social Systems, 2020, 7(4): 1033-1046. [19] CAI Z, HE Z. Trading private range counting over big IoT data[C] //Proceedings of the 39th IEEE Inter-national Conference on Distributed Computing Systems. Dallas, Texas, USA: IEEE, 2019. [20] TRAN-THANH L, CHAPMAN A, ROGERS A, et al. Knapsack based optimal policies for budget-limited multi-armed bandits[C] //Proceddings of 2012 AAAI Conference on Artificial Intelligence. Ontario, Canada: AAAI Press, 2012. |
[1] | 刘琪,刘沂训,秦丰林. P2P流媒体系统搭便车行为建模研究[J]. 山东大学学报(工学版), 2012, 42(6): 31-36. |
|