您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (1): 83-91.doi: 10.6040/j.issn.1672-3961.0.2021.495

• • 上一篇    

隔离开关与支架体系风振实测与响应分析

刘勇1,魏珍中1,蒋昱楠1,毕文哲2,周梦瑶2,杨萌2,田利2*   

  1. 1.山东电力工程咨询院有限公司, 山东 济南 250013;2. 山东大学土建与水利学院, 山东 济南 250061
  • 发布日期:2023-02-13
  • 作者简介:刘勇(1982— ),男,山东潍坊人,高级工程师,硕士,主要研究方向为变电站结构设计与分析. E-mail: liuyong@sdepci.com. *通信作者简介:田利(1982— ),男,山东枣庄人,教授,博导,主要研究方向为结构防灾减灾研究. E-mail:tianli@sdu.edu.cn
  • 基金资助:
    山东大学青年学者未来计划(2017WLJH33)

Wind vibration measurement and response analysis of isolation switch and support system

LIU Yong1, WEI Zhenzhong1, JIANG Yu'nan1, BI Wenzhe2, ZHOU Mengyao2, YANG Meng2, TIAN Li2*   

  1. 1.Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, Shandong, China;
    2. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2023-02-13

摘要: 基于现场实测和数值模拟,开展隔离开关与支架体系的动力风振实测与响应分析。基于计算流体动力学(computational fluid dynamics, CFD)模拟,研究隔离开关与支架体系的体型系数,并与规范计算结果进行对比分析;基于隔离开关与支架体系风振响应分析,开展风振系数数值模拟值与规范建议值的对比研究。研究结果表明:基于规范计算的格构式支架体型系数明显偏大,规范计算的体型系数相对保守;动侧结构的平均振动水平高于静侧结构,触头端部和结构顶部的位移响应明显高于支架顶部;设备支架在不同风攻角下的风振系数存在明显差异,其中60°风攻角下最大,对于斜风向角工况下规范给出的建议风振系数偏小。本研究结果可以为隔离开关与支架体系抗风设计提供科学依据。

关键词: 隔离开关与支架体系, 风振实测, CFD, 体型系数, 风振响应分析

中图分类号: 

  • TU352.1
[1] 高文. 特高压直流输电系统用开关设备研发现状与结构分析[J]. 高压电器, 2012, 48(11): 134-138. GAO Wen. Development and structure analysis of the switchgear applied to UHVDC transmission system[J]. High Voltage Apparatus, 2012, 48(11): 134-138.
[2] 李宏楼, 付亚旭, 郭海涛, 等. 800 kV高压交流隔离开关研究开发[J]. 高压电器, 2021, 57(9): 138-145. LI Honglou, FU Yaxu, GUO Haitao, et al. Research and development of 800 kV high-voltage AC disconnector[J]. High Voltage Apparatus, 2021, 57(9): 138-145.
[3] 陈富国,杨爱军,马慧珍,等. 高压隔离开关状态智能感知系统设计与实现[J]. 自动化技术与应用, 2021, 40(8): 131-135. CHEN Fuguo, YANG Aijun, MA Huizhen, et al. Design and implementation of intelligent state sensing system for high voltage disconnector[J]. Techniques of Automation and Applications, 2021, 40(8): 131-135.
[4] 白海峰,李宏男. 大跨越输电塔线体系随机脉动风场模拟研究[J]. 工程力学, 2007, 24(7): 146-151. BAI Haifeng, LI Hongnan. Simulation study of stochastic fluctuating wind field on large span electricity transmission tower-line system[J]. Journal of Engineering Mechanics, 2007, 24(7): 146-151.
[5] FU X, WANG J, LI H N, et al. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 119-133.
[6] 李正良,邹鑫,施菁华, 等. 特高压双柱悬索拉线塔塔线体系风洞试验研究[J]. 振动与冲击, 2015, 34(20): 46-50. LI Zhengliang, ZOU Xin, SHI Jinghua, et al. Wind tunnel test on ultra-high voltage cross-rope suspension tower-line[J]. Journal of Vibration and Shock, 2015, 34(20): 46-50.
[7] LI Y, LI Z L, SAVORY E, et al. Wind tunnel measurement of overall and sectional drag coefficients for a super high-rise steel tube transmission tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104363.
[8] ZHAO S, YAN Z T, SAVORY E. Design wind loads for transmission towers with cantilever cross-arms based on the inertial load method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205: 104286.
[9] CAI Y Z, XIE Q, XUE S T, et al. Fragility modelling framework for transmission line towers under winds[J]. Engineering Structures, 2019, 191: 686-697.
[10] ZHANG J, XIE Q. Failure analysis of transmission tower subjected to strong wind load[J]. Journal of Constructional Steel Research, 2019, 160: 271-279.
[11] XIE Q, CAI Y Z, XUE S T. Wind-induced vibration of UHV transmission tower line system: wind tunnel test on aero-elastic model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 219-229.
[12] TAPIA-HERNÁNDEZ E, IBARRA-GONZÁLEZ S, DE LEON D. Collapse mechanisms of power towers under wind loading[J]. Structure and Infrastructure Engin-eering, 2017, 13(6): 766-782.
[13] MARA T G, HONG H P. Effect of wind direction on the response and capacity surface of a transmission tower[J]. Engineering Structures, 2013, 57: 493-501.
[14] 刘学军,冯涛. 隔离开关中支柱绝缘子的风载荷计算[J]. 高压电器, 2015, 51(5): 83-88. LIU Xuejin, FENG Tao. Wind load calculation of post insulator in disconnecting switch[J]. High Voltage Apparatus, 2015, 51(5): 83-88.
[15] 莫冰,王宇驰,司小伟. 风力作用下800 kV高压交流隔离开关导电闸刀在合闸过程中动触头偏移的研究[J]. 现代制造技术与装备, 2016(10): 96-98. MO Bing, WANG Yuchi, SI Xiaowei. Research on moving contact deviation of conductive knife of 800 kV high voltage AC isolating switch during closing process under wind[J]. Modern Manufacturing Technology and Equipment, 2016(10): 96-98.
[16] 袁攀科,禹龙飞,龚晓雅,等. 基于直流隔离开关动端系统风载荷仿真分析[J]. 电工电气, 2020(7): 29-33. YUAN Panke, YU Longfei, GONG Xiaoya, et al. Wind load simulation analysis of actuating end system based on DC disconnector[J]. Electrotechnics Electric, 2020(7): 29-33.
[17] 李付永, 姚灿江, 孙龙勇, 等. 基于Fluent的GW16型隔离开关支柱绝缘子气流仿真分析[J]. 电工技术, 2018(17): 12-15. LI Fuyong, YAO Canjiang, SUN Longyong, et al. Simulation analysis of GW16 isolator insulator based on Fluent[J]. Electric Engineering, 2018(17): 12-15.
[18] 张衡, 张伟, 陈国平, 等.不同建筑顶部风力机安装位置的数值模拟[J]. 西南科技大学学报, 2017, 32(3): 60-65. ZHANG Heng, ZHANG Wei, CHEN Guoping, et al. Numerical simulation study on roof mounting position for micro-wind turbines under the equilibrium atmospheric boundary layer[J]. Journal of Southwest University of Science and Technology, 2017, 32(3): 60-65.
[19] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
[20] 国家能源局. 变电站建筑结构设计技术规程: DL/T 5457—2012[S]. 北京: 中国计划出版社, 2012.
[21] Engineering Sciences Data Unit(ESDU). Characteristics of wind speed in the lower layers of the atmosphere near the ground: strong winds(neutral atmosphere): ESDU—72026B[S]. London: ESDU International, 1972.
[1] 王志伟,葛楠,李春伟. 基于BP神经网络算法的结构振动模态模糊控制[J]. 山东大学学报 (工学版), 2020, 50(5): 13-19.
[2] 赵建锋,李洪一,刘苏文. 基于钢筋锈蚀的RC桥墩抗震性能[J]. 山东大学学报(工学版), 2017, 47(3): 112-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!