您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 111-117.doi: 10.6040/j.issn.1672-3961.0.2020.487

• • 上一篇    

输电线路多分裂导线脱冰动力响应分析

翟彬1,张思祥1,刘凯铭2,田利2*,张来仪2   

  1. 1. 山东电力工程咨询院有限公司, 山东 济南 250013;2. 山东大学土建与水利学院, 山东 济南 250061
  • 发布日期:2021-08-18
  • 作者简介:翟彬(1982— ),男,山东泰安人,高级工程师,主要研究方向为线路电气设计与研究. E-mail:zhaibin@sdepci.com. *通信作者简介:田利(1982— ),男,山东枣庄人,教授,博士,主要研究方向为结构防灾减灾研究. E-mail:tianli@sdu.edu.cn
  • 基金资助:
    山东大学青年学者未来计划(2017WLJH33)

Analysis on the dynamic response of multi-bundle transmission line subjected to ice-shedding

ZHAI Bin1, ZHANG Sixiang1, LIU Kaiming2, TIAN Li2*, ZHANG Laiyi2   

  1. 1.Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, Shandong, China;
    2.School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2021-08-18

摘要: 为探究输电线路在脱冰工况下的动力响应状态并对现有的脱冰跳跃经验公式进行改进,运用有限元软件ABAQUS建立四分裂导线有限元模型;基于隐式动力学方法对输电线路脱冰动力响应进行有限元分析,并将分析结果与经验公式计算结果进行对比,对现有的经验公式进行评价和改进,探究部分子导线单独脱冰对输电线路脱冰动力响应的影响,以找出子导线脱冰的最不利工况。研究结果表明:当导线覆冰厚度较小时,导线悬挂点处的支反力随脱冰率单调增加;而当导线覆冰厚度较大时,支反力随脱冰率先增加后减小;在脱冰跳跃经验公式中引入脱冰率作为参数可以提高计算公式的准确性;当部分子导线单独脱冰时,下部子导线脱冰会增加分裂导线发生翻转的风险,从而增加导线磨损和断股的概率。

关键词: 脱冰跳跃, 纵向不平衡张力, 四分裂导线, 动力响应, 输电线路

Abstract: In order to explore the dynamic response of transmission lines under ice-shedding and improve the existing empirical formula for ice-shedding jumping, the finite element software ABAQUS was used to establish the finite element(FE)model of a 4-bundle conductor. Utilizing the implicit dynamic method, the dynamic response of transmission line after ice-shedding was determined. The result of FE analysis was compared with that was calculated by empirical formulae, based on which the empirical formulae were evaluated and improved. In addition, the influence of ice-shedding occurring on partial sub-wires was investigated, through which the most unfavorable case was obtained. The results showed that when the thickness of ice coating was relatively small, the reaction force at the suspension point of the wire increased monotonously with the ice-shedding rate. If the ice coating was relatively thick, the reaction force would decrease slightly when the ice-sheding rate exceeds a certain value. Additionly, the ice-shedding rate could be used as a parameter in the empirical formula for ice-shedding jumping to improve the accuracy of the formula. When ice-shedding only occured on partial sub-wires, the ice-shedding on lower sub-wire would increase the risk of turning over and thus enlarge the probability of wire abrasion and rupture.

Key words: ice-shedding jumping, longitudinal unbalanced tension, 4-bundle conductor, dynamic response, transmission line

中图分类号: 

  • TU352
[1] MORGAN V T, SWIFT D A. Jump height of overhead-line conductors after the sudden release of ice loads [J]. Proceedings IEE, 1964, 111(10):1736-1746.
[2] JAMALEDDINE A, MCCLURE G, ROUSSELET J, et al. Simulation of ice-shedding on electrical transmission lines using adina[J]. Computers & Structures, 1993, 47(4/5):523-536.
[3] 苏士斌. 架空线脱冰动张力的模拟实验研究[D].北京:华北电力大学,2013. SU Shibin. Experimental study on the dynamic tension characteristics of the overhead transmission conductor under synchronous ice shedding[D]. Beijing: North China Electric Power University, 2013.
[4] 谢献忠,李丹,黄伟,等.塔线体系脱冰跳跃动力特性实验研究[J].应用力学学报,2017,34(5):855-861. XIE Xianzhong, LI Dan, HUANG Wei, et al. Experimental study on the dynamical properties of tower-line systems induced by ice-shedding[J]. Chinese Journal of Applied Mechanics, 2017, 34(5):855-861.
[5] 李宏男, 吴育炎. 输电线路覆冰脱落动力效应试验研究[J]. 土木工程学报,2019,52(5):35-46. LI Hongnan, WU Yuyan. Experimental study on dynamic responses of transmission lines caused by ice shedding[J].China Civil Engineering Journal, 2019, 52(5):35-46.
[6] 刘敏,晏致涛,冯上铭,等.多跨覆冰导线脱冰振动模型风洞试验研究[J].振动与冲击,2018,37(3):223-229. LIU Ming, YAN Zhitao, FENG Shangming, et al. Wind tunnel model tests for ice-shedding vibration of multi-span icing conductors[J]. Journal of Vibration and Shock, 2018, 37(3):223-229.
[7] KÁLMÁN T, FARZANEH M, MCCLURE G. Numerical analysis of the dynamic effects of shock-load-induced ice shedding on overhead ground wires[J]. Computers & Structures, 2007, 85(7/8):375-384.
[8] 沈国辉,袁光辉,邢月龙,等. 导线覆冰脱落的数值模拟和参数分析[J].振动与冲击,2012,31(5):55-59. SHEN Guohui, YUAN Guanghui, XING Yuelong, et al. Numerical simulation and parametric analysis of ice-shedding on conductors[J]. Journal of Vibration and Shock, 2012, 31(5):55-59.
[9] 杜运兴,卢心龙, 聂逸悠. 线路覆冰分层脱落动力响应的研究[J]. 湖南大学学报(自然科学版),2017,44(7):104-110. DU Yunxing, LU Xinlong, NIE Yiyou. Research on dynamic response of ice layer shedding in line system[J]. Journal of Hunan University(Natural Sciences), 2017, 44(7):104-110.
[10] 李黎,夏正春,付国祥,等. 大跨越输电塔-线在线路脱冰作用下的振动[J].振动与冲击,2008(9):32-34. LI Li, XIA Zhengchun, FUN Guoxiang, et al. Ice-shedding induced vibration of a long-span electric trans-mission tower-line system[J]. Journal of Vibration and Shock, 2008(9):32-34.
[11] 韩军科,杨靖波,杨风利,等.超/特高压同塔多回输电线路脱冰跳跃动力响应分析[J].电网技术,2012,36(9):61-67. HAN Junke, YANG Jingbo, YANG Fengli, et al.Analysis on dynamic responses of ice shedding-caused drastic conductor vibration occurred in EHV/UHV multi-circuit transmission lines on same tower[J]. Power Systen Technology, 2012, 36(9):61-67.
[12] 叶子菀,郭勇,尚奎. 山坡地形输电线路的覆冰脱冰研究[J].电网技术,2013,37(7):1959-1964. YE Zixuan, GUO Yong, SHANG Kui. Research on Ice accretion and shedding of ice-coating on transmission lines located in hillside areas[J]. Power System Technology, 2013, 37(7):1959-1964.
[13] BENNANI L, VILLEDIEU P, SALAUN M. A mixed adhesion—brittle fracture model and its application to the numerical study of ice shedding mechanisms [J]. Engineering Fracture Mechanics, 2016, 158:59-80.
[14] KOLLÁR L E, FARZANEH M, DYKE P V. Modeling ice shedding propagation on transmission lines with or without interphase spacers[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 261-267.
[15] 陈科全. 覆冰输电线路脱冰动力响应及机械式除冰方法研究[D]. 重庆:重庆大学, 2012. CHEN Kequan. Study on dynamic responses of iced transmission line after ice-shedding and the mechanical de-icing method[D]. Chongqing: Chongqing Univ-ersity, 2012.
[16] 张殿生. 电力工程高压送电线路设计手册[M]. 2版.北京:中国电力出版社,2003.
[17] YAN Bo, CHEN Kequan, GUO Yueming, et al. Numerical simulation study on jump height of iced transmission lines after ice shedding[J]. IEEE Transactions on Power Delivery, 2013, 28(1):216-225.
[18] 王德千,严波,黄桂灶,等. 输电导线脱冰跳跃高度实用简化计算公式[J]. 重庆大学学报, 2020, 43(2):64-71. WANG Deqian, YAN Bo, HUANG Guizao, et al. Simplified formula for jump height of transmission lines after ice-shedding[J]. Journal of Chongqing University, 2020, 43(2):64-71.
[1] 侯广松,高军,吴衍达,张欣,邓影,李常刚,张亚萍. 输电线路参数与运行方式的相关性分析[J]. 山东大学学报(工学版), 2017, 47(4): 89-95.
[2] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154-158.
[3] 马琳琳 潘贞存 高厚磊 丛伟 高湛军. 微型动模实验系统[J]. 山东大学学报(工学版), 2009, 39(5): 111-114.
[4] 张辉 王孟夏 韩学山. 电力系统的超前热定值及其应用探讨[J]. 山东大学学报(工学版), 2008, 38(6): 25-29.
[5] 牛新生,叶华,王亮 . 高压输电线路工频过电压机理分析[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 .
[6] 邹贵彬,高厚磊 . 高压输电线路工频过电压机理分析[J]. 山东大学学报(工学版), 2007, 37(4): 60-63 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!