您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 68-75.doi: 10.6040/j.issn.1672-3961.0.2020.158

• • 上一篇    下一篇

TGS360pro超前预报地下水的地震波场正演模拟分析——以岩溶模型为例

张明财1,2,3,巨广宏1,熊章强2,3,张大洲2,3   

  1. 1.中国电建集团西北勘测设计研究院有限公司, 陕西 西安 710043;2.中南大学地球科学与信息物理学院, 湖南 长沙 410083;3.有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:张明财(1986— ),男,甘肃武威人,博士研究生,工程师,主要研究方向为地球探测与信息技术. E-mail:csuzmc@163.com

Forward modeling analysis of seismic wave field for TGS360pro advanced prediction of groundwater: taking the karst model as an example

ZHANG Mingcai1,2,3, JU Guanghong1, XIONG Zhangqiang2,3, ZHANG Dazhou2,3   

  1. 1. Powerchina NorthWest Engineering Corporation Limited, Xi'an 710043, Shaanxi, China;
    2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China;
    3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Changsha 410083, Hunan, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 为了避免隧道开挖过程中由对掌子面前方地下水赋存状态探测不准而发生涌水事故,通过隧道地质超前预报TGS360系统,利用地震波信号的瞬时幅度和瞬时频率与岩体结构面的关系,准确、高效地对掌子面前方的赋水体进行探测,同时基于TGS360pro隧道超前预报系统原理,采用谱元法对掌子面前方存在充水溶洞的地质模型进行数值正演模拟,在波场分析的基础上,对正演所得地震波场记录数据进行Hilbert变换,得到了应力变化曲线。数值分析结果表明:TGS360pro隧道超前预报系统可以有效地探测掌子面前方富水状况,在隧道开挖建设中具有推广应用前景。

关键词: TGS360pro系统, 地下水, 谱元法, 瞬时频率, 瞬时相位, 应力变化

Abstract: In order to avoid the occurrence of water gushing accident due to the inaccurate detection of the underground water storage state in front of the tunnel during the excavation of the tunnel, the tunnel geology survey TGS360pro System was used to accurately and efficiently detect the water-bearing body in front of the tunnel face by using the relation between the instantaneous amplitude and frequency of seismic wave signal and the rock structure plane, at the same time, based on the principle of TGS360pro tunnel Prediction System, the geological model with water-filled cave in front of the face was simulated by using spectral element method, through the stress curve, the numerical analysis results showed that the TGS360pro Tunnel Prediction System could effectively detect the water-rich condition in front of the tunnel, it had the prospect of popularization and application in tunnel excavation construction.

Key words: TGS360pro System, groundwater, the spectral element method, instantaneous frequency, instantaneous amplitude, stress change

中图分类号: 

  • P315.3
[1] 李利平,路为,李术才,等. 地下工程突水机理及其研究最新进展[J]. 山东大学学报(工学版), 2010, 40(3): 104-113. LI Liping, LU Wei, LI Shucai, et al. Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J]. Journal of Shandong University(Engineering Science), 2010, 40(3):104-113.
[2] 郭如军,何发亮. 隧道施工突水致灾构造及其分类[J]. 现代隧道技术, 2017, 54(1):55-60. GUO Rujun, HE Faliang. Water burst disaster-causing structure and and classification in tunnel construction[J]. Modern Tunnelling Technology, 2017, 54(1):55-60.
[3] 邱道宏,钟世航,李术才,等. 陆地声纳法在隧道不良地质超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 17-21. QIU Daohong, ZHONG Shihang, LI Shucai, et al. Application of the land sonar method in tunnel defective geological advanced prediction[J]. Journal of Shandong University(Engineering Science), 2009, 39(4):17-21.
[4] 赵中杰. 山岭隧道地下水规律及防治方法研究[J]. 交通世界, 2018, 451(1): 190-192. ZHAO Zhongjie. Study on groundwater law and control method of mountain tunnel[J]. Transportation World, 2018, 451(1):190-192.
[5] 王国栋. 浅谈隧道施工阶段地下水的处理对策[J]. 隧道建筑技术, 2005,2(增刊1): 117-120. WANG Guodong. Discussion on the treatment countermeasures of groundwater in tunnel construction stage[J]. Railway Construction Technology, 2005, 2(Suppl.1):117-120.
[6] 李辉,韩自强,陈棚. 瞬变电磁法在公路隧道地下水预报中的应用[J]. 隧道建设, 2019, 39(1): 355-360. LI Hui, HAN Ziqiang, CHEN Peng. Application of transient electromagnetic method in groundwater prediction of highway tunnel [J]. Tunnel Construction, 2019, 39(1): 355-360.
[7] 邢修举. 岩溶隧道瞬变电磁三维超前探测技术研究[J]. 隧道建设, 2019, 39(2): 287-293. XING Xiuju. 3D transient electromagnetic advanced detection technology for karst tunnel[J]. Tunnel Construction, 2019, 39(2): 287-293.
[8] 周黎明,付代光,肖国强,等. 隧道超前地质预报中的地质雷达波场特征分析与应用[J]. 长江科学院院报, 2018, 35(3): 92-96. ZHOU Liming, FU Daiguang, XIAO Guoqiang, et al. Characteristics of ground penetrating radar profile in advanced geological prediction for tunnels:analysis and application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(3): 92-96.
[9] 聂利超,李术才,刘斌,等. 隧道含水构造频域激发极化法超前探测研究[J]. 岩土力学, 2012, 33(4): 1151-1160. NIE Lichao, LI Shucai, LIU Bin, et al. An advanced detection study of frequency domain induced polarization method for water-bearing structure of tunnel[J]. Rock and Soil Mechanics, 2012, 33(4): 1151-1160.
[10] 李术才. TBM施工隧道前向三维激发极化法超前探测装置系统及方法: CN103076635B[P]. 2013.
[11] 李术才. 隧道掘进机破岩震源和主动源三维地震联合超前探测系统: CN104678428B[P]. 2015.
[12] 赵永贵. 国内外隧道超前预报技术评析与推介[J]. 地球物理学进展, 2007, 22(4): 1344-1352. ZHAO Yonggui. Analysis and recommendation of tunnel prediction techniques at home and abroad[J]. Progress In Geophysics, 2007, 22(4): 1344-1352.
[13] 戴前伟, 何刚, 冯德山. TSP-203在隧道超前预报中的应用[J]. 地球物理学进展, 2005, 20(6): 460-464. DAI Qianwei, HE Gang, FENG Deshan. Application of the TSP 203 system in geological advanced prediction of tunnel[J]. Progress In Geophysics, 2005, 20(6): 460-464.
[14] 林建宁,李庶林,焦玉勇,等. TSP超前地质预报探测技术及其应用现状[J]. 工程地质学报, 2010, 18(增刊1): 220-228. LIN Jianning, LI Shulin, JIAO Yuyong, et al. Analysis and present application state of tunnel seismic prediction[J]. Journal of Engineering Geology, 2010, 18(Suppl.1): 220-228.
[15] 张卿, 罗宗帆. TST超前地质预报技术在贵州岩溶地区的应用[J]. 隧道建设, 2012, 32(3): 398-403. ZHANG Qing, LUO Zongfan. Application of tst advance geology prediction technology in karst areas in guizhou[J]. Tunnel Construction, 2012, 32(3): 398-403.
[16] 赵体,葛克水,郑政委. TGP206地质超前预报系统在隧道施工中的应用[J]. 世界科技研究与发展, 2008, 30(5): 613-617. ZHAO Ti, GE Keshui, ZHENG Zhengwei. Application of TGP206 in the advanced geological forecast for tunnel construction[J]. World SCI-TECH R&D, 2008, 30(5): 613-617.
[17] PISETSKI V. Method for predicting dynamic parameters of fluids in a subterranean reservoir: 6,498,989[P]. 2002.
[18] PISETSKI V. Method for determining the presence of fluids in a subterranean formation: 6,028,820[P]. 2000.
[19] BIOT A M. Mechanics of incremental deformations[M]. London, John Wiley & Sons, Inc., 2000: 25-45.
[20] 张金波, 杨顶辉, 贺茜君, 等. 求解双相和黏弹性介质波传播方程的间断有限元方法及其波场模拟[J]. 地球物理学报, 2018, 61(3): 926-937. ZHANG Jinbo, YANG Dinghui, HE Xijun, et al. Discontinuous galerkin method for solving wave equations in two-phase and viscoelastic media[J]. Chinese Journal Of Geophysics, 2018, 61(3): 926-937.
[21] KOMATITSCH D, BARNES C, TROMP J. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics, 2000, 65(4): 1251-1260.
[22] KOMATITSCH D, VILOTTE J P. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
[23] 王童奎,龙桂华,李瑞华, 等. 横向各向同性介质中地震波场谱元法数值模拟[J]. 地球物理学进展, 2007, 22(3): 778-784. WANG Tongkui, LONG Guihua, LI Ruihua, et al. Numerical spectral-element modeling for seismic wave propagation in transversely isotropic medium[J]. Progress In Geophysics, 2007, 22(3): 778-784.
[24] GEUZAINE C, REMACLE J F. Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331.
[25] KOMATITSCH D, XIE Z. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion[J]. Geophys J Int, 206(3):1467-1478.
[26] 蒋锦朋,何良,朱培民, 等. 基于槽波的TVSP超前探测方法:可行性研究[J]. 地球物理学报, 2018, 61(9): 3865-3875. JIANG Jinpeng, HE Liang, ZHU Peimin, et al. TVSP method for reconnaissance beyond coal roadway based on in-seam seismic waves: a feasibility study[J]. Chinese Journal of Geophysics, 2018, 61(9): 3865-3875.
[1] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[2] 王者超,张振杰,李术才,毕丽平,方水鑫,钟克诚. 基于离散裂隙网络法的地下石油洞库洞室间水封性评价[J]. 山东大学学报(工学版), 2016, 46(2): 94-100.
[3] 梁建毅1,李术才2,薛翊国2,王者超2,周毅2,平洋2. 地下储油库岩体水文地质分类及工程应用研究[J]. 山东大学学报(工学版), 2012, 42(6): 86-92.
[4] 廖伙木,董增川, 束龙仓,贠汝安 . 地下水位预报中的组合时间序列分析法[J]. 山东大学学报(工学版), 2008, 38(2): 96-100 .
[5] 姚占勇,李运恒,商庆森,李世华,张宏博 . 平原水网区等级公路若干问题的研究[J]. 山东大学学报(工学版), 2008, 38(1): 70-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[8] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[9] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .