山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 77-83.doi: 10.6040/j.issn.1672-3961.0.2020.157
• • 上一篇
宫卫平1,管洪军1,李宏伟1,刘杰本1,史月涛2*
GONG Weiping1, GUAN Hongjun1, LI Hongwei1, LIU Jieben1, SHI Yuetao2*
摘要: 针对某电厂供热能耗偏高,利用EBSILON仿真软件搭建了200 MW和300 MW机组的联机供热系统模型,获得机组最佳运行方式,有效缓解了联机机组能耗大、运行成本高的问题。在模拟过程中,对不同热电负荷进行计算模拟,得到机组总煤耗与发电标准煤耗随300 MW机组热电负荷占比的变化关系曲线。根据模拟结果得出:当300 MW机组发电量为250 MW至280 MW时,机组的经济性及安全性最佳。为确定联机机组最佳热电负荷分配提供了理论支持,实现了节能减排、能耗降低的目标。
中图分类号:
[1] 高秀志, 谢林贵, 杨浩. 供热机组给水回热系统优化及收益分析[J]. 东方汽轮机, 2018(1): 18-22. GAO Xiuzhi, XIE Lingui, YANG Hao. Optimization and income analysis of feed-water regenerative system in heat-supply turbine sets[J]. Dongfang Turbine, 2018(1): 18-22. [2] 黄魁. 临河电厂2×300 MW供热机组热负荷优化分配方案研究[D]. 保定:华北电力大学, 2014. HUANG Kui. Research on thermal load optimization scheme in Linhe Power Plant 2×300 MW cogeneration units[D]. Baoding: North China Electric Power University, 2014. [3] 丁晓冬. 热电联产机组间热电负荷优化分配的研究[D]. 保定:华北电力大学, 2015. DING Xiaodong. Research on heat and power load optimizing distribution between cogeneration units[D]. Baoding: North China Electric Power University, 2015. [4] 王利宏, 张彦春, 周立刚, 等. 供热抽汽对联合循环余热锅炉系统参数的影响[J]. 热力发电, 2017, 46(1): 68-72. WANG Lihong, ZHANG Yanchun, ZHOU Ligang, et al. Influence of steam sxtraction for heating on HRSG steam parameter[J]. Thermal Power Generation, 2017, 46(1): 68-72. [5] 靖长财. 机组工业供热抽汽集成和优化技术研究及应用[J]. 神华科技, 2018, 16(7): 45-47. JING Changcai. Study and application of integration and optimization technology of the units industrial heating steam extraction[J]. Shenhua Science and Technology, 2018, 16(7): 45-47. [6] 孙士恩, 高新勇, 陈菁, 等. 某供热机组工业抽汽优化改造与热经济性分析[J]. 暖通空调, 2018, 48(7): 84-87. SUN Shien, GAO Xinyong, CHEN Jing, et al. Heat economic analysis of a heating unit with industrial steam extraction retrofitting[J]. Heating Ventilating & Air Conditioning, 2018, 48(7): 84-87. [7] 叶青, 万杰, 居国腾, 等. 考虑多影响因素的全厂机组间热电负荷动态优化分配方法研究[J]. 节能技术, 2018, 36(6): 489-493. YE Qing, WAN Jie, JU Guoteng, et al. Study on dynamic optimum distribution method of thermal and electrical load of whole power plant units considering multiple factors[J]. Energy Conservation Technology, 2018, 36(6): 489-493. [8] 黄廷辉, 柴胜凯, 庞顺,等. 热电联产机组热、电负荷优化分配[J]. 热力发电, 2010, 39(12): 1-4. HUANG Tinghui, CHAI Shengkai, PANG Shun, et al. Optimal distribution of heat and power load for cogeneration units[J]. Thermal Power Generation, 2010, 39(12): 1-4. [9] 李慧君, 赵翔, 刘聪. 区域热电厂负荷优化分配的研究[J]. 汽轮机技术, 2017, 59(4): 283-286. LI Huijun, ZHAO Xiang, LIU Cong. Research on optimal load distribution of regional thermal power plants[J]. Steam Turbine Technology, 2017, 59(4): 283-286. [10] 柏春光, 万杰, 刘娇, 等. 基于遗传算法的抽汽供热机组间的热电负荷分配优化研究[J]. 节能技术, 2014, 32(3): 201-204. BAI Chunguang, WAN Jie, LIU Jiao, et al. Optimization of load distribution between extraction thermoelectric heating unit based on genetic algorithms[J]. Energy Conservation Technology, 2014, 32(3): 201-204. [11] 王珊, 刘明, 严俊杰. 采用粒子群算法的热电厂热电负荷分配优化[J]. 西安交通大学学报, 2019, 53(9): 159-166. WANG Shan, LIU Ming, YAN Junjie. Optimizing heat-power load distribution of thermal power plants based on particle swarm algorithm[J]. Journal of Xi'an Jiaotong University, 2019, 53(9): 159-166. [12] ARAKELYAN E K, ANDRIUSHIN A V, BURTSEV S Y, et al. Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration[J]. Pleiades Publishing, 2015, 62(5): 335-340. [13] 宋晓玮. 燃气轮机联合循环热电联产年供热供电量优化分配研究[D]. 北京:华北电力大学, 2019. SONG Xiaowei. Study on the optimal programming of the annual heat and power supply for a gas turbine combined cycle with heat and power cogeneration[D]. Beijing: North China Electric Power University, 2019. [14] 童占北, 杨顺吉. 一种火电机组负荷经济分配的研究[J]. 科技风, 2020(1): 168-169. TONG Zhanbei, YANG Shunji. Study on economic load distribution of thermal power unit[J]. Technology Wind, 2020(1): 168-169. [15] 张润丰, 刘扬. 基于鸟枪法的热电负荷优化分配研究[J]. 区域供热, 2016(4): 17-22. ZHANG Runfeng, LIU Yang. Research on optimal distribution of thermal load based on shotgun method[J]. District Heating, 2016(4): 17-22. [16] 骆小满, 皇甫成, 阮江军, 等. 基于神经网络的热电联产机组热负荷和电负荷预测[J]. 热力发电, 2019, 48(9): 46-50. LUO Xiaoman, HUANG Fucheng, RUAN Jiangjun, et al. Prediction of heat load and electric load of cogeneration unit based on neural network[J]. Thermal Power Generation, 2019, 48(9): 46-50. [17] 鲁芬, 刘永强, 周科. 提高燃煤锅炉低负荷下热效率技术探讨[J]. 热力发电, 2018, 47(8): 73-78. LU Fen, LIU Yongqiang, ZHOU Ke. Discussions on the technology of improving thermal efficiency of coal-fired boilers at low load[J]. Thermal Power Generation, 2018, 47(8): 73-78. [18] 邵波. 工业锅炉低负荷运行的原因分析及解决措施[J]. 工业锅炉, 2019(5): 59-61. SHAO Bo. Cause analysis and solutions for low load running of industrial boilers[J]. Industrial Boilers, 2019(5): 59-61. [19] 陶丽, 杨宇, 陈国巍, 等. 300 MW机组深度调峰技术研究与应用[J]. 发电设备, 2019, 33(6): 427-431. TAO Li, YANG Yu, CHEN Guowei, et al. Research and application of the deep peak regulation technology in a 300 MW unit[J]. Power Equipment, 2019, 33(6): 427-431. [20] 孙育恒. 试析稳定燃烧减少熄火的对策[J]. 智能城市, 2019, 5(14): 215-216. SUN Yuheng. Analysis on the countermeasures of stable combustion to reduce flameout[J]. Intelligent City, 2019, 5(14): 215-216. |
No related articles found! |
|