您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 77-83.doi: 10.6040/j.issn.1672-3961.0.2020.157

• • 上一篇    

基于EBSILON仿真软件的联机供热负荷分配优化

宫卫平1,管洪军1,李宏伟1,刘杰本1,史月涛2*   

  1. 1.中国石化集团胜利石油管理局有限公司, 山东 东营 257087;2. 山东大学能源与动力工程学院, 山东 济南 250061
  • 发布日期:2021-08-18
  • 作者简介:宫卫平(1971— ),男,山东乳山人,高级工程师,主要研究方向为火电厂运行与设备管理. E-mail:gongweiping663.slyt@sinopec.com. *通信作者简介:史月涛(1974— ),男,山东济南人,教授,博士,主要研究方向为火力发电厂. E-mail:shieddie@sdu.edu.cn

Optimization of heating load distribution of combined unit based on EBSILON simulation software

GONG Weiping1, GUAN Hongjun1, LI Hongwei1, LIU Jieben1, SHI Yuetao2*   

  1. 1. Sinopec Shengli Petroleum Administrative Bureau, Dongying 257087, Shandong, China;
    2. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2021-08-18

摘要: 针对某电厂供热能耗偏高,利用EBSILON仿真软件搭建了200 MW和300 MW机组的联机供热系统模型,获得机组最佳运行方式,有效缓解了联机机组能耗大、运行成本高的问题。在模拟过程中,对不同热电负荷进行计算模拟,得到机组总煤耗与发电标准煤耗随300 MW机组热电负荷占比的变化关系曲线。根据模拟结果得出:当300 MW机组发电量为250 MW至280 MW时,机组的经济性及安全性最佳。为确定联机机组最佳热电负荷分配提供了理论支持,实现了节能减排、能耗降低的目标。

关键词: 电厂仿真, 热电联产, 抽汽供热, 热电负荷, 分配优化

Abstract: In view of the high heat energy consumption of a power plant, the system model of 200 MW and 300 MW combined unit was built by EBSILON simulation software, and the optimal operation mode of the unit was obtained, which effectively alleviated the problems of large energy consumption and high operation cost of combined unit. In simulation process, different distribution of heat and power load was calculated. When the proportion of heat and power load of 300 MW unit changed, the corresponding change curves of the total coal consumption of the unit and the standard coal consumption for generation power were obtained. The simulation results showed that, the economy and safety of the unit were the best when the generating capacity of 300 MW unit was 250 MW to 280 MW. The results provided theoretical support for determining the optimal heat and power load distribution of combined unit, and achieved the goals of energy saving, emission reduction and energy consumption reduction.

Key words: power plant simulation, combined heat and power, heat supply with extraction steam, heat and power load, distribution optimization

中图分类号: 

  • TM621
[1] 高秀志, 谢林贵, 杨浩. 供热机组给水回热系统优化及收益分析[J]. 东方汽轮机, 2018(1): 18-22. GAO Xiuzhi, XIE Lingui, YANG Hao. Optimization and income analysis of feed-water regenerative system in heat-supply turbine sets[J]. Dongfang Turbine, 2018(1): 18-22.
[2] 黄魁. 临河电厂2×300 MW供热机组热负荷优化分配方案研究[D]. 保定:华北电力大学, 2014. HUANG Kui. Research on thermal load optimization scheme in Linhe Power Plant 2×300 MW cogeneration units[D]. Baoding: North China Electric Power University, 2014.
[3] 丁晓冬. 热电联产机组间热电负荷优化分配的研究[D]. 保定:华北电力大学, 2015. DING Xiaodong. Research on heat and power load optimizing distribution between cogeneration units[D]. Baoding: North China Electric Power University, 2015.
[4] 王利宏, 张彦春, 周立刚, 等. 供热抽汽对联合循环余热锅炉系统参数的影响[J]. 热力发电, 2017, 46(1): 68-72. WANG Lihong, ZHANG Yanchun, ZHOU Ligang, et al. Influence of steam sxtraction for heating on HRSG steam parameter[J]. Thermal Power Generation, 2017, 46(1): 68-72.
[5] 靖长财. 机组工业供热抽汽集成和优化技术研究及应用[J]. 神华科技, 2018, 16(7): 45-47. JING Changcai. Study and application of integration and optimization technology of the units industrial heating steam extraction[J]. Shenhua Science and Technology, 2018, 16(7): 45-47.
[6] 孙士恩, 高新勇, 陈菁, 等. 某供热机组工业抽汽优化改造与热经济性分析[J]. 暖通空调, 2018, 48(7): 84-87. SUN Shien, GAO Xinyong, CHEN Jing, et al. Heat economic analysis of a heating unit with industrial steam extraction retrofitting[J]. Heating Ventilating & Air Conditioning, 2018, 48(7): 84-87.
[7] 叶青, 万杰, 居国腾, 等. 考虑多影响因素的全厂机组间热电负荷动态优化分配方法研究[J]. 节能技术, 2018, 36(6): 489-493. YE Qing, WAN Jie, JU Guoteng, et al. Study on dynamic optimum distribution method of thermal and electrical load of whole power plant units considering multiple factors[J]. Energy Conservation Technology, 2018, 36(6): 489-493.
[8] 黄廷辉, 柴胜凯, 庞顺,等. 热电联产机组热、电负荷优化分配[J]. 热力发电, 2010, 39(12): 1-4. HUANG Tinghui, CHAI Shengkai, PANG Shun, et al. Optimal distribution of heat and power load for cogeneration units[J]. Thermal Power Generation, 2010, 39(12): 1-4.
[9] 李慧君, 赵翔, 刘聪. 区域热电厂负荷优化分配的研究[J]. 汽轮机技术, 2017, 59(4): 283-286. LI Huijun, ZHAO Xiang, LIU Cong. Research on optimal load distribution of regional thermal power plants[J]. Steam Turbine Technology, 2017, 59(4): 283-286.
[10] 柏春光, 万杰, 刘娇, 等. 基于遗传算法的抽汽供热机组间的热电负荷分配优化研究[J]. 节能技术, 2014, 32(3): 201-204. BAI Chunguang, WAN Jie, LIU Jiao, et al. Optimization of load distribution between extraction thermoelectric heating unit based on genetic algorithms[J]. Energy Conservation Technology, 2014, 32(3): 201-204.
[11] 王珊, 刘明, 严俊杰. 采用粒子群算法的热电厂热电负荷分配优化[J]. 西安交通大学学报, 2019, 53(9): 159-166. WANG Shan, LIU Ming, YAN Junjie. Optimizing heat-power load distribution of thermal power plants based on particle swarm algorithm[J]. Journal of Xi'an Jiaotong University, 2019, 53(9): 159-166.
[12] ARAKELYAN E K, ANDRIUSHIN A V, BURTSEV S Y, et al. Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration[J]. Pleiades Publishing, 2015, 62(5): 335-340.
[13] 宋晓玮. 燃气轮机联合循环热电联产年供热供电量优化分配研究[D]. 北京:华北电力大学, 2019. SONG Xiaowei. Study on the optimal programming of the annual heat and power supply for a gas turbine combined cycle with heat and power cogeneration[D]. Beijing: North China Electric Power University, 2019.
[14] 童占北, 杨顺吉. 一种火电机组负荷经济分配的研究[J]. 科技风, 2020(1): 168-169. TONG Zhanbei, YANG Shunji. Study on economic load distribution of thermal power unit[J]. Technology Wind, 2020(1): 168-169.
[15] 张润丰, 刘扬. 基于鸟枪法的热电负荷优化分配研究[J]. 区域供热, 2016(4): 17-22. ZHANG Runfeng, LIU Yang. Research on optimal distribution of thermal load based on shotgun method[J]. District Heating, 2016(4): 17-22.
[16] 骆小满, 皇甫成, 阮江军, 等. 基于神经网络的热电联产机组热负荷和电负荷预测[J]. 热力发电, 2019, 48(9): 46-50. LUO Xiaoman, HUANG Fucheng, RUAN Jiangjun, et al. Prediction of heat load and electric load of cogeneration unit based on neural network[J]. Thermal Power Generation, 2019, 48(9): 46-50.
[17] 鲁芬, 刘永强, 周科. 提高燃煤锅炉低负荷下热效率技术探讨[J]. 热力发电, 2018, 47(8): 73-78. LU Fen, LIU Yongqiang, ZHOU Ke. Discussions on the technology of improving thermal efficiency of coal-fired boilers at low load[J]. Thermal Power Generation, 2018, 47(8): 73-78.
[18] 邵波. 工业锅炉低负荷运行的原因分析及解决措施[J]. 工业锅炉, 2019(5): 59-61. SHAO Bo. Cause analysis and solutions for low load running of industrial boilers[J]. Industrial Boilers, 2019(5): 59-61.
[19] 陶丽, 杨宇, 陈国巍, 等. 300 MW机组深度调峰技术研究与应用[J]. 发电设备, 2019, 33(6): 427-431. TAO Li, YANG Yu, CHEN Guowei, et al. Research and application of the deep peak regulation technology in a 300 MW unit[J]. Power Equipment, 2019, 33(6): 427-431.
[20] 孙育恒. 试析稳定燃烧减少熄火的对策[J]. 智能城市, 2019, 5(14): 215-216. SUN Yuheng. Analysis on the countermeasures of stable combustion to reduce flameout[J]. Intelligent City, 2019, 5(14): 215-216.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!