您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 101-111.doi: 10.6040/j.issn.1672-3961.0.2020.128

• 电气工程 • 上一篇    下一篇

电动汽车虚拟储能可用容量建模

李蓓1(),赵松1,2,谢志佳1,牛萌1   

  1. 1. 中国电力科学研究院有限公司,北京 100192
    2. 华北电力大学控制科学与工程学院,北京 102206
  • 收稿日期:2020-04-20 出版日期:2020-12-20 发布日期:2020-12-15
  • 作者简介:李蓓(1980—),女,山东威海人,高级工程师,博士,主要研究方向为规模化储能及应用. E-mail:libei@epri.sgcc.com.cn
  • 基金资助:
    中国电力科学研究院有限公司创新基金资助项目(5242001700H7)

Electric vehicle virtual energy storage available capacity modeling

Bei LI1(),Song ZHAO1,2,Zhijia XIE1,Meng NIU1   

  1. 1. China Electric Power Research Institute, Beijing 100192, China
    2. North China Electric Power University College of Control Science and Engineering, Beijing 102206, China
  • Received:2020-04-20 Online:2020-12-20 Published:2020-12-15

摘要:

为实现对广域布点的电动汽车虚拟储能(electric vehicle virtual energy storage,EVVES)的合理调用,通过聚类划分参与EVVES服务的电动汽车类型,结合各类电动汽车车主的用车习惯(如日行驶里程、充放电规律、期望备用出行电量等)、市场对EVVES响应度的影响、可用储能容量冗余设计等多方因素,综合建立可供调度的虚拟储能容量估算模型;结合电力系统对储能参与系统紧急功率支撑、峰谷差调节以及平滑可再生能源输出等有偿辅助服务的技术需求,提出EVVES供需匹配依据。基于蒙特卡洛模拟方法,验证模型实时估算不同时段响应虚拟储能(virtual energy storage,VES)服务的可用容量的实用性,对后续开展EVVES的运营实践奠定了基础。

关键词: 电动汽车, 虚拟储能, 可用容量建模, 蒙特卡洛模拟, 聚类分析

Abstract:

In order to efficiently implement the virtual energy storage dispatch of electric vehicles in a wide area, the article focused on the types of electric vehicles that respond to electric vehicle virtual energy storage (EVVES) services by clustering, combined with the use habits of all kinds of electric vehicle owners (such as daily driving mileage, charging and discharging rules, expected standby travel electricity, etc.), the impact of market on EVVES responsiveness, redundant design of available energy storage capacity and other factors, a virtual energy storage (VES) capacity estimation model was established. Combined with the technical requirements of power system for energy storage to participate in system services, such as emergency power support, smooth renewable energy output, UPS/EPS, etc., the matching basis of supply and demand was proposed. Based on Monte Carlo simulation method, the practicability of the model to estimate the available capacity of response VES service in different time periods was verified, which layed the foundation for the operation practice of EVVES in future.

Key words: electric vehicle, virtual energy storage, available capacity modeling, Monte Carlo simulation method, clustering analysis

中图分类号: 

  • TM85

图1

电动汽车的状态分布"

表1

不同时段内电动汽车行驶状态"

时段 电动汽车状态
A类 B类
t1 M1 M21
t2 M21 M1
t3 M1 M21
t4 M21 M1
t5 M1 M21
t6 M21 M21
t0 M23 M23

图2

EVVES响应特性"

图3

EV日行驶里程概率密度曲线"

图4

停车时间概率密度拟合曲线"

图5

EVVES可用容量统计流程"

表2

电力系统对VES服务的不同技术要求"

需求分类 应用场景 功率规模/万kW 持续时间 响应时间
小时级 提供输变电设备容量扩充 1~30 1~6 h < 15 min
实现峰谷价差套利 <0.1 1~4 h < 15 min
提供负荷侧需求侧响应管理 <5 2~6 h < 15 min
提供分布式电源出力波动平滑服务 0.1~5 1~4 h <15 s
分钟级 提供短时备用容量支援服务 5~100 15 min~1 h < 1 min
提供二次调频服务 1~50 1~15 min 2.5~15 s
秒级 提供紧急功率支撑服务 10~100 1~30 s 1 ms~1 s

表3

电动汽车电池相关数据"

车辆类型 额定容量/(kWh) 电动汽车效率/% 百公里能耗/(kWh) 最大放电功率/kW
A类 A1 82 95 20.5 20
A2 95 92 17.5 23
A3 79 89 23.5 17
B类 B1 84 95 33.6 23.5
B2 88 90 36 16.5
B3 80 88 32.2 20

表4

响应VES服务调度的EV实体数量"

时间 NAves NBves
t0 26 0
t1 0 1
t2 25 1
t3 2 10
t4 324 5
t5 22 49
t6 239 50

表5

EVVES在不同时段的可用容量和"

时间 A类 B类 总和
t0 1 513 0 1 513
t1 0 52 52
t2 1 489 49 1 538
t3 126 457 583
t4 19 549 254 19 803
t5 1 252 2 580 3 832
t6 14 024 2 562 16 586

表6

EVVES在不同时段的可用功率和"

时间 A类 B类 总和
t0 520 0 520
t1 0 20 20
t2 500 20 520
t3 40 200 240
t4 6 480 100 6580
t5 440 980 1 420
t6 4 780 1 000 5 780

表7

不同持续时间集合中的EV数量分布"

时间 TL1 TL2 TL3
t0 26 26 25
t1 1 1 1
t2 26 26 26
t3 12 12 11
t4 327 327 323
t5 70 70 68
t6 286 286 279

表8

不同持续时间集合中EVVES的容量和"

时间 TL1 TL2 TL3
t0 374 374 369
t1 16 16 16
t2 360 360 360
t3 185 185 174
t4 4 692 4 692 4 642
t5 1 050 1 050 1 029
t6 4 138 4 138 4 120

表9

不同持续时间集合中EVVES的功率和"

时间 TL1 TL2 TL3
t0 520 520 500
t1 20 20 20
t2 520 520 520
t3 240 240 220
t4 6 540 6 540 6 460
t5 1 400 1 400 1 360
t6 5 720 5 720 5 580

图6

不同持续时间集合中EVVES的容量"

图7

不同持续时间集合中EVVES的功率"

1 肖湘宁, 陈征, 刘念. 可再生能源与电动汽车充放电设施在微电网中的集成模式与关键问题[J]. 电工技术学报, 2013, 28 (2): 1- 14.
doi: 10.3969/j.issn.1000-6753.2013.02.001
XIAO Xiangning , CHEN Zheng , LIU Nian . Integrated mode and key issues of renewable energy sources and electric vehicles' charging and discharging facilities in microgrid[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 1- 14.
doi: 10.3969/j.issn.1000-6753.2013.02.001
2 肖浩, 裴玮, 孔力. 含大规模电动汽车接入的主动配电网多目标优化调度方法[J]. 电工技术学报, 2017, 32 (增刊2): 179- 189.
XIAO Hao , PEI Wei , KONG Li . Multi-objective optimization scheduling method for active distribution network with large scale electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, (Suppl.2): 178- 189.
3 孙波, 廖强强, 谢品杰, 等. 车电互联削峰填谷的经济成本效益分析[J]. 电网技术, 2012, 36 (10): 30- 34.
SUN Bo , LIAO Qiangqiang , XIE Pinjie , et al. A cost-benefit analysis model of vehicle-to-grid for peak shaving[J]. Power System Technology, 2012, 36 (10): 30- 34.
4 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35 (14): 30- 35.
MAO Meiqin , SUN Shujuan , SU Jianhui . Economic analysis of wind/solar/storage microgrid including electric vehicles[J]. Automation of Electric Power Systems, 2011, 35 (14): 30- 35.
5 包广清, 徐欣. 电动汽车与风电机组协同作用的微电网经济调度[J]. 太阳能学报, 2015, 36 (9): 2300- 2306.
doi: 10.3969/j.issn.0254-0096.2015.09.039
BAO Guangqing , XU Xin . Economic dispatch of micro-grids based on coordination between electric vehicle and wind power[J]. Acta Energiae Solaris Sinica, 2015, 36 (9): 2300- 2306.
doi: 10.3969/j.issn.0254-0096.2015.09.039
6 于大洋, 宋曙光, 张波, 等. 区域电网电动汽车充电与风电协同调度的分析[J]. 电力系统自动化, 2011, 35 (14): 24- 29.
YU Dayang , SONG Shuguang , ZHANG Bo , et al. Synergistic dispatch of pevs charging and wind power in chinese reginal power grids[J]. Automation of Electric Power Systems, 2011, 35 (14): 24- 29.
7 姚伟锋, 赵俊华, 文福拴, 等. 集中充电模式下的电动汽车调频策略[J]. 电力系统自动化, 2014, 38 (9): 69- 76.
YAO Weifeng , ZHAO Junhua , WEN Fushuan , et al. Frequency regulation strategy for electric vehicles with centralized charging[J]. Automation of Electric Power Systems, 2014, 38 (9): 69- 76.
8 SABER A Y, VENAYAGAMOORTHY G K. Unit commitment with vehicle-to-grid using particle swarm optimization[C]. IEEE Bucharest Power Tech Conference, Bucharest, Romania: IEEE, 2009.
9 HANNES K , ANDREW C . Modular strategy for aggreg-ator control and data exchange in large scale vehicle-to-grid (V2G) applications[J]. Energy Procedia, 2018, 151, 7- 11.
doi: 10.1016/j.egypro.2018.09.019
10 薛飞, 雷宪章, 张野飚, 等. 电动汽车与智能电网从V2G到B2G的全新结合模式[J]. 电网技术, 2012, 36 (2): 29- 34.
XUE Fei , LEI Xianzhang , ZHANG Yebiao , et al. A brand-new approach of connecting electrical vehicles with smart grid from vehicles-to-grid model[J]. Power System Technology, 2012, 36 (2): 29- 34.
11 李虎成, 汤奕, 於益军.大规模电动汽车充放电行为聚合效应对电网功率平衡影响的研究[C]//国电机工程学会年会.贵州: 国电机工程学会, 2011: 20-27.
LI Hucheng, TANG Yi, YU Yijun. Research about the influence on load power balance for the charging and discharging behaviors' aggregation effect of large-scale electric vehicles[C]// Proceedings of the Annual Meeting of the Chinese Society of Electrical Engineering. Guizhou, China: Annual Meeting of the Chinese Society of Electrical Engineering, 2011: 20-27.
12 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29 (8): 36- 45.
doi: 10.3969/j.issn.1000-6753.2014.08.005
WENG Guoqing , ZHANG Youbing , QI Jun , et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in mircogird[J]. Transactions of China Electrotechnical Society, 2014, 29 (8): 36- 45.
doi: 10.3969/j.issn.1000-6753.2014.08.005
13 王贵斌, 赵俊华, 文福拴, 等. 配电系统中电动汽车与可再生能源的随机协同调度[J]. 电力系统自动化, 2012, 36 (19): 22- 28.
WANG Guibin , ZHAO Junhua , WEN Fushuan , et al. Stochastic optimization dispatch of plug-in hybird electric vehicles in coordination with renewable generation in distribution systems[J]. Automation of Electric Power Systems, 2012, 36 (19): 22- 28.
14 葛少云, 王龙, 刘洪, 等. 计及电动汽车入网的峰谷电价时段优化模型研究[J]. 电网技术, 2013, 37 (8): 2316- 2321.
GE Shaoyun , WANG Long , LIU Hong , et al. An optimization model of peak-valley price time-interval considering vehicle-to-grid[J]. Power System Technology, 2013, 37 (8): 2316- 2321.
15 KAURK , DUA A , JINDAL A , et al. A novel resource reservation scheme for mobile phevs in V2G environment using game theoretical approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (12): 5653- 5666.
doi: 10.1109/TVT.2015.2482462
16 DRUDEL , JUNIOR L C P , RICARDO Rüther . Photovoltaics (pv) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in brazil in a smart grid environment[J]. Renewable Energy, 2014, 68 (4): 443- 451.
17 TABATABAEES , MORTAZAVI S S , NIKNAM T . Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources[J]. Energy, 2017, 121, 480- 490.
doi: 10.1016/j.energy.2016.12.115
18 WANGM , MU Y , JIA H , et al. Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles[J]. Applied Energy, 2016, 185, 1673- 1683.
19 MISHRA S , SAHOO S , PULLAGURAM D R . A systematic state of charge based V2G charging framework for frequency response[J]. Ifac Papersonline, 2015, 48 (30): 31- 36.
doi: 10.1016/j.ifacol.2015.12.349
20 KAM M V D , SARK W V . Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid: a case study[J]. Applied Energy, 2015, 152, 20- 30.
doi: 10.1016/j.apenergy.2015.04.092
21 项顶, 宋永华, 胡泽春, 等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报, 2013, 33 (31): 15- 25.
XIANG Ding , SONG Yonghua , HU Zechun , et al. Research on optimal time of use price for electric vehicle participating V2G[J]. Proceedings of the CSEE, 2013, 33 (31): 15- 25.
22 刘都利, 周任军, 孙洪. 考虑电动汽车分类的V2G消纳风电优化策略[J]. 电测与仪表, 2018, 55 (9): 69- 76.
doi: 10.3969/j.issn.1001-1390.2018.09.013
LIU Duli , ZHOU Renjun , SUN Hong . Optimization strategy of V2G for wind power accommodation considering electric vehicle classification[J]. Electrical Measurement & Instrumentation, 2018, 55 (9): 69- 76.
doi: 10.3969/j.issn.1001-1390.2018.09.013
23 彭智乐.新型配电网中风光电动汽车协同调度研究[D].广州: 广东工业大学, 2016.
PENG Zhile. Synergistic dispatch of new type distribution network with wind-PV and PEVs[D]. Guangzhou: Guangdong University of Technology, 2016.
24 刘晓飞, 崔淑梅, 李锦瑭, 等. 停车场电动汽车用户侧最优V2G控制策略研究[J]. 电气工程学报, 2015, 10 (10): 44- 51.
LIU Xiaofei , CUI Shumei , LI Jintang , et al. Research on electric vehicle user-side optimization V2G control strategy in parkinglot[J]. Journal of Electrical Engineering, 2015, 10 (10): 44- 51.
25 王冉, 王丹, 贾宏杰, 等. 一种平抑微网联络线功率波动的电池及虚拟储能协调控制策略[J]. 中国电机工程学报, 2015, 35 (20): 5124- 5134.
WANG Ran , WANG Dan , JIA Hongjie , et al. Acoordination control strategy of battery and virtual energy storage to smooth the microgrid tie line power fluctuations[J]. Proceedings of the CSEE, 2015, 35 (20): 5124- 5134.
26 Zhang J , Liu C , Yuan R , et al. Design scheme for fast charging station for electric vehicles with distributed photovoltaic power generation[J]. Global Energy Interconnection, 2019, 2 (2): 150- 159.
doi: 10.1016/j.gloei.2019.07.003
27 王博.考虑V2G用户响应度的峰谷电价建模与优化[D].北京: 华北电力大学, 2016.
WANG Bo. Modeling and optimization of peak-valley price considering V2G user reactivity[D]. Beijing: North China Electric Power University, 2016.
28 刘坚, 金亨美, 唐莉, 等.电动汽车储能市场及激励机制研究[R].北京: 自然资源保护协会, 2018: 20-21.
LIU Jian, JIN Hengmei, TANG Li, et al. Research on electric vehicle energy storage market and incentive mechanism[R]. Beijing: NRDC, 2018: 20-21.
29 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34 (11): 126- 130.
TIAN Liting , SHI Shuanglong , JIA Zhuo . A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34 (11): 126- 130.
30 刘坚. 电动汽车储能技术应用潜力及功能定位研究[J]. 全球能源互联网, 2020, 3 (1): 44- 50.
LIU Jian . An analysis on the application potential and position of electric vehicle energy storage[J]. Global Energy Interconnection, 2020, 3 (1): 44- 50.
[1] 宋士瞻,陈浩宇,张健,王坤,郝庆水. 考虑路灯充电桩接入的城市配电网电压控制方法[J]. 山东大学学报 (工学版), 2020, 50(3): 104-110.
[2] 李建祥,车长明,韩元凯,陈芳,张程琳. 高速公路电动汽车应急充电救援方案综述[J]. 山东大学学报(工学版), 2017, 47(6): 121-127.
[3] 许玮,冀肖彤,刘海波,韩元凯,陈芳,张程琳. 电动汽车应急救援站选址及资源配置[J]. 山东大学学报(工学版), 2017, 47(6): 115-120.
[4] 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114.
[5] 符晓玲,张奇,张承慧. 大型仪器设备在科研及教学中的共享应用机制[J]. 山东大学学报(工学版), 2016, 46(6): 83-88.
[6] 马相明,孙霞,张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报 (工学版), 2015, 45(5): 82-87.
[7] 张国亮,李波*,王运发. 多等级电动汽车充电站的选址与算法[J]. 山东大学学报(工学版), 2011, 41(6): 136-142.
[8] 刘杨1,程勇1*,纪少波1,黄万友1,李闯2,张笑文2. 基于GPRS与CAN总线的纯电动汽车无线监测平台的开发[J]. 山东大学学报(工学版), 2011, 41(6): 109-114.
[9] 董凤娟,邹华彬*,陆玮洁,杜爱琴. 双指标等级序列模式识别法分析十全大补丸氯仿提取物红外指纹图谱[J]. 山东大学学报(工学版), 2010, 40(6): 113-119.
[10] 吴东洋,业宁. 基于BIRCH的木材缺陷识别[J]. 山东大学学报(工学版), 2010, 40(5): 137-140.
[11] 王好芳 吴美 陈文艳. 模糊聚类分析在区域水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2009, 39(3): 139-143.
[12] 王耘,穆勇,刘庆红 . 基于灰关联分析的模糊聚类最优划分判定模型[J]. 山东大学学报(工学版), 2006, 36(2): 86-89 .
[13] 王耘,穆勇,刘庆红 . 基于灰关联分析的模糊聚类最优划分判定模型[J]. 山东大学学报(工学版), 2006, 36(2): 86-89 .
[14] 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[5] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[6] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[9] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .