您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 132-136.doi: 10.6040/j.issn.1672-3961.0.2017.056

• 其他 • 上一篇    

石墨烯化石墨/聚苯胺电极的制备及电容特性

王晓丹(),高明明*()   

  1. 山东大学环境科学与工程学院, 山东 济南 250100
  • 收稿日期:2017-02-17 出版日期:2018-12-20 发布日期:2018-12-26
  • 通讯作者: 高明明 E-mail:xdwang@mail.sdu.edu.cn;mmgao@sdu.edu.cn
  • 作者简介:王晓丹(1990—),男,陕西宝鸡人,硕士研究生,主要研究方向为电催化.E-mail: xdwang@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51108250);山东省自然科学基金资助项目(ZR2015EM028);山东大学基本科研经费资助项目(2015JC017)

Polyaniline modified graphene layers/graphite plate electrode for supercapacitor

Xiaodan WANG(),Mingming GAO*()   

  1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
  • Received:2017-02-17 Online:2018-12-20 Published:2018-12-26
  • Contact: Mingming GAO E-mail:xdwang@mail.sdu.edu.cn;mmgao@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(51108250);山东省自然科学基金资助项目(ZR2015EM028);山东大学基本科研经费资助项目(2015JC017)

摘要:

通过电解剥落得到的表面石墨烯化的石墨电极(graphene layers/graphite plate, GL/GP)为基底,在硫酸介质中以苯胺为单体,采用循环伏安法(cyclic voltammetry, CV)制备了表面石墨烯化的石墨/聚苯胺(graphene layers/graphite plate/polyaniline, GL/GP/PANI)电极,并探究聚合圈数对GL/GP/PANI电极比电容的影响。利用场发射扫描电镜(scanning electron microscope, SEM)对电极材料的形貌进行表征。在0.5 M H2SO4电解液中,对合成的电极材料进行循环伏安、恒电流充放电(chronopotentiometry, CP)和电化学稳定性测试。结果表明,在表面石墨烯化的石墨电极上合成的PANI具有棒状结构,电流密度为0.085 mA/cm2时, GL/GP/PANI电容器的比电容可达1 042.8 F/g。提供了一种新的超级电容材料基底电极的构建方式。

关键词: 聚苯胺, 石墨烯, 电解剥落, 超级电容

Abstract:

Polyaniline modified graphene layers/graphite plate (GL/GP/PANI) electrodes were prepared by electrochemical polymerization of aniline on graphene layers/graphite electrodes, which were obtained via in-situ formation of graphene layers on graphite plate by electrochemical exfoliation. The effect of polymerization cycle to specific capacitance of GL/GP/PANI was investigated. The surface features of the electrodes were characterized by SEM. The electrochemical performances of the electrodes were measured in 0.5 M H2SO4 electrolyte, including cyclic voltammetry, galvanostatic charge-discharge and electrochemical stability test. The results indicated that the PANI on the GL/GP electrodes had rodlike structure. At current density of 0.085 mA/cm2, the specific capacitance GL/GP/PANI reached 1 042.8 F/g. This study provided a new way to fabricate substrate electrode material for supercapacitor.

Key words: polyanline, graphene, electrochemical exfoliation, supercapacitor

中图分类号: 

  • O646.541

图1

GL/GP的SEM照片"

图2

GL/GP表面电聚合不同圈数PANI循环伏安图"

图3

GL/GP/PANI-5的扫描电镜图"

图4

GL/GP/PANI-5的循环伏安曲线"

图5

不同电极材料恒电流充放电曲线"

表1

不同聚合圈数聚苯胺电极材料的比电容"

电极 面积比电容/
(mF·cm-2)
质量比电容/
(F·g-1)
GL/GP 37.09
GL/GP/PANI-5 145.99 1 042.8
GL/GP/PANI-10 169.76 1 041.4
GL/GP/PANI-15 193.53 744.8

图6

GL/GP/PANI-5随循环次数充放电曲线"

1 HONG W , WANG J , GONG P , et al. Rational construction of three dimensional hybrid Co3O4 @ NiMoO4 nanosheets array for energy storage application[J]. Journal of Power Sources, 2014, 270 (3): 516- 525.
2 LIU Y , PENG X . Recent advances of supercapacitors based on two-dimensional materials[J]. Applied Materials Today, 2017, (7): 1- 12.
3 ZHENG W , CHENG Q , WANG D , et al. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition[J]. Journal of Power Sources, 2017, 341, 1- 10.
doi: 10.1016/j.jpowsour.2016.11.093
4 ZHOU D , WANG H , MAO N , et al. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte[J]. Microporous and Mesoporous Materials, 2017, 241, 202- 209.
doi: 10.1016/j.micromeso.2017.01.001
5 SNOOK G A , KAO P , BEST A S . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196 (1): 1- 12.
doi: 10.1016/j.jpowsour.2010.06.084
6 ZHANG L L , LI S , ZHANG J , et al. Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline[J]. Chemistry of Materials, 2010, 22 (3): 1195- 1202.
doi: 10.1021/cm902685m
7 LI L , LIU E , LI J , et al. A doped activated carbon prepared from polyaniline for high performance supercapacitors[J]. Journal of Power Sources, 2010, 195 (5): 1516- 1521.
doi: 10.1016/j.jpowsour.2009.09.016
8 BÉLANGER D , REN X , DAVEY J , et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors[J]. Journal of the Electrochemical Society, 2000, 147 (8): 2923- 2929.
doi: 10.1149/1.1393626
9 李晶, 赖延清, 李颉, 等. 导电聚苯胺电极材料在超级电容器中的应用及研究进展[J]. 材料导报, 2006, 20 (12): 20- 23.
doi: 10.3321/j.issn:1005-023X.2006.12.006
LI Jing , LAI Yanqing , LI Jie , et al. The application and research evolvement of the conductive polyaniline in the area of supercapacitor[J]. Materials Review, 2006, 20 (12): 20- 23.
doi: 10.3321/j.issn:1005-023X.2006.12.006
10 代涛娟, 王昱豪, 雷文, 等. 纳米结构坡缕石改性聚苯胺超级电容器电极材料的研究[J]. 武汉理工大学学报, 2013, 35 (9): 11- 15.
doi: 10.3963/j.issn.1671-4431.2013.09.003
DAI Taojuan , WANG Yihao , LEI Wen , et al. Nanostructured palygorskite modified polyaniline electrode materials for supercapacitors[J]. Journal of Wuhan University of Technology, 2013, 35 (9): 11- 15.
doi: 10.3963/j.issn.1671-4431.2013.09.003
11 徐惠, 李俊玲, 彭振军, 等. 聚苯胺的电化学制备及电容特性[J]. 高分子材料科学与工程, 2013, 29 (2): 9- 12.
XU Hui , LI Junling , PENG Zhenjun , et al. Electrochemical preparation and capacitance characteristics of polyaniline[J]. Polymeric Materials Science and Engineering, 2013, 29 (2): 9- 12.
12 FENG X M , LI R M , MA Y W , et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21 (15): 2989- 2996.
doi: 10.1002/adfm.201100038
13 陈仲欣, 卢红斌. 石墨烯-聚苯胺杂化超级电容器电极材料[J]. 高等学校化学学报, 2013, 34 (9): 2020- 2033.
CHEN Zhongxin , LU Hongbin . Overview of graphene /polyaniline composite for high-performance supercapacitor[J]. Chemical Journal of Chinese Universities, 2013, 34 (9): 2020- 2033.
14 ZHU Y , MURALI S , CAI W , et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22 (35): 3906- 3924.
doi: 10.1002/adma.201001068
15 STANKOVICH S , DIKIN D A , DOMMETT G H , et al. Graphene-based composite materials[J]. Nature, 2006, 442 (7100): 282- 286.
doi: 10.1038/nature04969
16 GEORGAKILAS V , TIWARI J N , KEMP K C , et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116 (9): 5464- 5519.
doi: 10.1021/acs.chemrev.5b00620
17 SALAVAGIONE H J . Promising alternative routes for graphene production and functionalization[J]. Journal of Materials Chemistry A, 2014, 2, 7138- 7146.
doi: 10.1039/C3TA15455F
18 GOPALAKRISHNAN K , SULTAN S , GOVINDARAJ A , et al. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2[J]. Nano Energy, 2015, 12, 52- 58.
doi: 10.1016/j.nanoen.2014.12.005
19 DIMIEV A M , TOUR J M . Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8 (3): 3060- 3068.
doi: 10.1021/nn500606a
20 BOUKHVALOV D W . Oxidation of a graphite surface: the role of water[J]. The Journal of Physical Chemistry C, 2014, 118 (47): 27594- 27598.
doi: 10.1021/jp509659p
21 PARVEZ K , WU Z S , LI R , et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136 (16): 6083- 6091.
doi: 10.1021/ja5017156
22 ZHANG L , LIANG J , HUANG Y , et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation[J]. Carbon, 2009, 47 (14): 3365- 3368.
doi: 10.1016/j.carbon.2009.07.045
23 SINGH V V , GUPTA G , BATRA A , et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Advanced Functional Materials, 2012, 22 (11): 2352- 2362.
doi: 10.1002/adfm.v22.11
24 TANG J , CHEN S , YUAN Y , et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells[J]. Biosensors and Bioelectronics, 2015, 71, 387- 395.
doi: 10.1016/j.bios.2015.04.074
[1] 王明雨,苏丽清,张少君,汪昱. Fe3O4磁性石墨烯分散固相萃取水中的有机氯污染物[J]. 山东大学学报(工学版), 2017, 47(4): 117-123.
[2] 祁振, 于淑艳, 刘璐, 王曙光*. 石墨烯对四环素的吸附热力学及动力学研究[J]. 山东大学学报(工学版), 2013, 43(3): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[3] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[7] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[8] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[9] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[10] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .