山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 72-77.doi: 10.6040/j.issn.1672-3961.0.2013.348
郑楠1, 李聪2, 谢慧君3, 张建1
ZHENG Nan1, LI Cong2, XIE Huijun3, ZHANG Jian1
摘要: 以反硝化除磷过程中N2O的减量化为目的,分别以乙酸、乙酸和丙酸的混合物、丙酸为碳源,研究了碳源类型对系统中N2O产生的影响。结果表明:以乙酸为碳源时反硝化除磷过程中N2O的产生量最多,以乙酸和丙酸混合物为碳源时N2O产量次之,以丙酸为碳源时N2O产量最少。使用乙酸、乙酸与丙酸混合物和丙酸为碳源时,N2O产生量占总氮(TN)去除的比例分别为8.67%、1.48%和0.72%。不同碳源导致了系统反硝化进程的不同:以丙酸为碳源时,硝酸盐与亚硝酸盐还原速率比值最低,系统中几乎没有亚硝酸盐的积累;同时,在混合酸和丙酸系统中,聚3-羟基戊酸盐(poly-hydroxyvalerate, PHV)成为聚羟基烷酸酯(poly-β-hydroxyalkanoates,PHA)的主要成分,PHV量的增加导致N2O产量减少。因此,以丙酸作为反硝化除磷系统的外加碳源对N2O的减量化有明显优势,但该过程中系统对氮和磷的去除效果还需要进一步优化。
中图分类号:
[1] 王亚宜,彭永臻,王淑莹,等.反硝化除磷理论、工艺及影响因素[J].中国给水排水,2003,9(1):33-36. [2] KUBA T, VAN LOOSDRECHT M C M, HEIJNEN J J.Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J].Water Research, 1996, 30(7):1702-1710. [3] WANG Y Y, GENG J J, REN Z J, et al.Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J].Bioresource Technology, 2011, 102(10):5674-5684. [4] WANG Y Y, GENG J J, GUO G, et al.N2O production in anaerobic/anoxic denitrifying phosphorus removal process: the effects of carbon sources shock[J].Chemical Engineering Journal, 2011, 172(2-3):999-1007. [5] CARVALHO G, LEMOS P C, OEHMEN A, et al.Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J].Water Research, 2007, 41(19):4383-4396. [6] 张超,陈银广,刘燕.不同丙酸/乙酸长期驯化的活性污泥对EBPR的影响[J].环境科学,2008,29(9):2548-2552.ZHANG Chao, CHEN Yinguang, LIU Yan.Effect of different ratios of propionic to acetic acids on Long-term cultered active sludge for enhanced biological phosphorus removal[J].Environmental Science, 2008, 29(9):2548-2552. [7] LI C, WANG T, ZHENG N, et al.Influence of organic shock loads on the production of N2O in denitrifying phosphorus removal process[J].Bioresource Technology, 2013, 141:160-166. [8] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:210-280. [9] INOUE Y, SANO F, NAKAMURA K, et al.Microstructure of copoly(3-hydroxyalkanoates)produced in the anaerobic-aerobic activated sludge process[J].Polymer International, 1996, 39(3):183-189. [10] 李秀娟.反硝化除磷脱氮工艺中N2O的产生及减量化控制[D].济南:山东大学,2012.LI Xiujuan.Research on the emission and reduction control of N2O from denitrifying phosphate removal system[D].Jinan:Shandong University, 2012. [11] 鲍林林,李相昆,张杰.碳源类型对反硝化除磷系统的影响[J].环境工程学报,2011,5(7):1567-1571.BAO Linlin, LI Xiangkun, ZHANG Jie.Effect of carbon sources on denitrifying phosphorus removal system[J].Chinese Journal of Environmental Engineering, 2011, 5(7):1567-1571. [12] ZHU X Y, CHEN Y G.Reduction of N2O and NO generation in anaerobic-aerobic(low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid[J].Environmental Science & Technology, 2011, 45:2137-2143. [13] OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al.Optimisation of poly-beta-hydroyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal system[J].Journal of Chromatography A, 2005, 1070(1-2):131-136. [14] ZHOU Y, MELVIN L, SOEKENDRO H, et al.Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source[J].Journal of Environmental Sciences, 2012, 24(9):1616-1623. [15] ZHOU Y, OEHMEN A, LIM M.The role of nitrite and free nitrous acid(FNA)in wastewater treatment plants[J].Water Research, 2011, 45(15):4672-4682. |
[1] | 袁莎莎,于海波,高明明,王新华. 有机碳源缺乏对成熟好氧颗粒污泥性能的影响[J]. 山东大学学报(工学版), 2017, 47(4): 124-130. |
[2] | 刘熠1,2,贾海瑞2,秦晓燕2,徐扬2 *. 基于格值逻辑系统LP(X)的α-归结域的代数结构[J]. 山东大学学报(工学版), 2013, 43(3): 13-18. |
[3] | 黄伟1,王书文2*,杨筱平3,贾建芳3. 基于图像分解的敦煌壁画图像修复方法[J]. 山东大学学报(工学版), 2010, 40(2): 24-27. |
[4] | 宋岱才, 姜凤利, 田秋菊. 某些迭代法的一个收敛性定理[J]. 山东大学学报(工学版), 2009, 39(2): 146-146. |
|