山东大学学报 (工学版) ›› 2022, Vol. 57 ›› Issue (5): 1-10.doi: 10.6040/j.issn.1671-9352.4.2021.250
• •
薛占熬1,2*,李永祥1,2,姚守倩1,2,荆萌萌1,2
XUE Zhan-ao1,2*, LI Yong-xiang1,2, YAO Shou-qian1,2, JING Meng-meng1,2
摘要: 在直觉模糊集和粗糙集理论基础上,结合Bayesian概率和近似关系,提出了Bayesian直觉模糊粗糙集模型,并对其进行研究。首先,在粗糙集的基础上,定义了基于直觉模糊粗糙集上的Bayesian概率,结合直觉模糊近似关系和模糊矩阵,给出了直觉模糊等价关系,并讨论了其性质;其次,根据直觉模糊集和截集的特性,得到基于Bayesian直觉模糊粗糙集的等价类,并进一步给出了上、下近似的划分方法,求出正、负域和边界域并计算近似精度;最后,在UCI数据集上,分析验证该模型的有效性,该模型能较好地分类含有模糊信息的数据。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Science, 1993, 46(1):39-59. [3] ZHAO S Y, TSANG E C C, CHEN D G. The model of fuzzy variable precision rough sets[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2):451-467. [4] SUN Bingzhen, MA Weimin. Fuzzy rough set model on two different universes and its application[J]. Applied Mathematical Modelling, 2011, 35(4):1798-1809. [5] WANG Chunyong. A comparative study of variable precision fuzzy rough sets based on residuated lattices[J]. Fuzzy Sets and Systems, 2019, 37(3):94-115. [6] LI Juan, SHAO Yabin, QI Xiaoding. On variable-precision-based rough set approach to incomplete interval-valued fuzzy information systems and its applications[J]. Journal of Intelligent and Fuzzy Systems, 2020(1):1-12. [7] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Science, 1993, 46(1):39-59. [8] YAO Y Y. Decision-theoretic rough set models[M] //Rough Sets and Knowledge Technology. Toronto: Springer, 2007: 1-12. [9] 薛占熬,张敏,赵丽平,等.集对优势关系下多粒度决策粗糙集的可变三支决策模型[J].计算机科学,2021,48(1):157-166. XUE Zhanao, ZHANG Min, ZHAO Liping, et al. Variable three-way decision model of multi-granulation decision rough sets under set-pair dominance relation[J]. Computer Science, 2021, 48(1):157-166. [10] 薛占熬,韩丹杰,吕敏杰,等.一种新的基于粒度重要度的三支决策模型[J].计算机科学,2019,46(2):236-241. XUE Zhanao, HAN Danjie, LYU Minjie, et al. New three-way decisions model based on granularity importance degree[J]. Computer Science, 2019, 46(2):236-241. [11] 徐久成,徐战威,李梦凡,等.基于三支决策的二阶段分类模型研究[J].河南师范大学学报(自然科学版),2019,47(3):28-34,124. XU Jiucheng, XU Zhanwei, LI Mengfan, et al. Research on two-stage classification model based on three-way decisions[J]. Journal of Henan Normal University(Natural Science Edition), 2019, 47(3):28-34,124. [12] PAWLAK Z. Decision rules, Bayes rule and rough sets[J]. Lecture Notes in Computer Science, 1999, 3(2):1-9. [13] 韩敏,张俊杰,彭飞,等.一种基于多决策类的贝叶斯粗糙集模型[J].控制与决策,2009,24(11):1615-1619. HAN Min, ZHANG Junjie, PENG Fei, et al. Bayesian rough set model based on multiple decision classes[J]. Control and Decision, 2009, 24(11):1615-1619. [14] 胡名彩,郭伏,叶国全.基于改进变精度贝叶斯粗糙集的感性知识获取[J].东北大学学报(自然科学版),2018,39(12):1794-1799. HU Mingcai, GUO Fu, YE Guoquan. Kansei knowledge acquisition based on the improved variable precision Bayesian rough set[J]. Journal of Northeastern University(Natural Science), 2018, 39(12):1794-1799. [15] ZHANG Hongyun, ZHOU Jie, MIAO Duoqian, et al. Bayesian rough set model:a further investigation[J]. International Journal of Approximate Reasoning, 2012, 53(4):541-557. [16] 卓德强.基于贝叶斯粗糙集的肺部肿瘤CT图像抗噪算法设计[J].生物医学工程研究,2019,38(3):331-335. ZHUO Deqiang. Design of noise control algorithm for CT image of pulmonary tumor based on Bayesian rough set[J]. Journal of Biomedical Engineering Research, 2019, 38(3):331-335. [17] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965(8):338-353. [18] ZADEH L A. A note on prototype theory and fuzzy sets[J]. Cognition, 1982, 12(3):291-297. [19] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96. [20] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6):529-539. [21] TORRA V, NARUKAWA Y. On hesitant fuzzy sets and decision[C] //2009 IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2009: 1378-1382. [22] 胡晓元,孙秉珍.基于双论域量化模糊粗糙集的公共卫生应急决策模型[J].系统科学与数学,2019,39(3):409-424. HU Xiaoyuan, SUN Bingzhen. The model of public health emergency decision-making based on double quantitative fuzzy rough set over two universes[J]. Journal of Systems Science and Mathematical Sciences, 2019, 39(3):409-424. [23] 刘丹,李敬伟.基于矩阵的双论域模糊概率粗糙集增量更新算法[J].控制与决策,2021,36(3):553-564. LIU Dan, LI Jingwei. Incremental updating of fuzzy probability rough sets over two universes based on matrix method[J]. Control and Decision, 2021, 36(3):553-564. [24] 张晶,李德玉,王素格,等.基于稳健模糊粗糙集模型的多标记文本分类[J].计算机科学,2015,42(7):270-275. ZHANG Jing, LI Deyu, WANG Suge, et al. Multi-label text classification based on robust fuzzy rough set model[J]. Computer Science, 2015, 42(7):270-275. [25] 李亚鸽,杨宏志,徐久成.基于不完备信息系统的三角模糊数决策粗糙集[J].智能系统学报,2016,11(4):449-458. LI Yage, YANG Hongzhi, XU Jiucheng. Triangular fuzzy number decision-theoretic rough sets under incomplete information systems[J]. CAAI Transactions of Intelligent Systems, 2016, 11(4):449-458. [26] YANG Hailong, LIAO Xiuwu, WANG Shouyang, et al. Fuzzy probabilistic rough set model on two universes and its applications[J]. International Journal of Approximate Reasoning, 2013, 54(9):1410-1420. [27] 谈静.犹豫模糊有序信息系统的属性约简[D].成都:西华大学,2019. TAN Jing. Hesitant fuzzy attribute reduction of ordered information system[D]. Chengdu: Xihua University, 2019. [28] CHEN Yingyue, CHEN Yumin. Feature subset selection based on variable precision neighborhood rough sets[J]. International Journal of Computational Intelligence Systems, 2021, 14(1):572-581. [29] 张利亭,冯涛,李欢.不完备信息系统的直觉模糊决策粗糙集[J].郑州大学学报(理学版),2021,53(2):57-65. ZHANG Liting, FENG Tao, LI Huan. Intuitionistic fuzzy decision rough sets for incomplete information systems[J]. Journal of Zhengzhou University(Natural Science Edition), 2021, 53(2):57-65. [30] YAO Y Y, ZHOU B. Two Bayesian approaches to rough sets[J]. European Journal of Operational Research, 2016, 251(3):904-917. |
[1] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
|