您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 1-7.

• 论文 •    下一篇

一种网络流量分类特征的产生及选择方法

阳爱民1,周咏梅1,邓河2,周剑峰3   

  1. 1.广东外语外贸大学信息科学技术学院, 广东 广州 510420; 2.长沙民政职业技术学院, 湖南 长沙 410004;
    3.广东外语外贸大学国际工商管理学院, 广东 广州 510420
  • 收稿日期:2010-04-02 出版日期:2010-10-16 发布日期:2010-04-02
  • 作者简介:阳爱民(1970-),男,湖南永州人,教授,博士后,研究方向为智能计算、网络流量分类、模糊分类.Email:amyang@mail.gdufs.edu.cn
  • 基金资助:

    广东省科技计划项目(2009B080701031);广东省高等学校人才引进项目。

Method of feature generation and selection for network traffic classification

YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3   

  1. 1. School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510420,China;
     2. Changsha Social Work College, Changsha 410004, China;
    3. School of Management, Guangdong University of Foreign Studies, Guangzhou 510420, China
  • Received:2010-04-02 Online:2010-10-16 Published:2010-04-02

摘要:

在基于机器学习方法的网络流量分类系统中,特征产生及特征选择将直接影响到分类的速度及精度。针对这种情况,在特征产生方面,结合Packet-Level和Flow-Level上的信息,对报文属性(大小、个数、时间、标志位)、流的属性(时间)进行分析和研究,产生了37个网络流量统计特征。在特征选择方面,提出一种结合Filter模型和Wrapper模型的网络流量特征选择方法,实现了降维作用。实验表明,提出的方法提高了分类的精度。

关键词: 网络流量分类, 特征产生, 特征选择, 遗传算法

Abstract:

In the System of Network Traffic Classification based on machine learning method, feature generation and feature selection directly affects the speed and accuracy of classification. To solve this problem, in feature generation aspect, we analyze the packet’s attributes (size, count, time, flag) and flow’s attributes (time) from the information of Packet-Level and FlowLevel, and 37 statistical features are generated. In feature selection aspect, we proposes a method of feature selection integrating Filter model and Wrapper model, to decrease the dimension of features. Experiments show the proposed methods improve the accuracy of classification.

Key words: network traffic classification, feature generation, feature selection, feature distance, genetic algorithm

[1] 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34.
[2] 邵孟伟,袁世飞,周宏志,王乃华. 基于BP神经网络和遗传算法的翅片管结构优化[J]. 山东大学学报 (工学版), 2025, 55(6): 76-82.
[3] 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57.
[4] 孙尚渠,张恭禄,蒋志斌,李朝阳. 盾构滚刀磨损的影响因素敏感性分析及预测[J]. 山东大学学报 (工学版), 2025, 55(1): 86-96.
[5] 陈吟枫,肖晋宇,侯金鸣,江涵,赵小令,施啸寒. 基于精细化运行模拟的源-网-储协同短期扩展规划[J]. 山东大学学报 (工学版), 2024, 54(6): 156-166.
[6] 李二超, 张智钊. 在线动态订单需求车辆路径规划[J]. 山东大学学报 (工学版), 2024, 54(5): 62-73.
[7] 赵姣,杨倩倩,胡大伟,胡卉,李洋. 基于排队模型的电动物流车充电站选址和运输路径问题[J]. 山东大学学报 (工学版), 2024, 54(2): 47-59.
[8] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[9] 孙东磊,杨思,韩学山,叶平峰,王宪,刘蕊. 高比例风电接入下计及时段间耦合旋转备用响应风险的动态经济调度方法[J]. 山东大学学报 (工学版), 2022, 52(5): 111-122.
[10] 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101.
[11] 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75.
[12] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[13] 宋修广,张营超,庄培芝,杨鹤,张海凤,王娟. 基于遗传算法的道路安定极限优化求解方法[J]. 山东大学学报 (工学版), 2021, 51(5): 1-7.
[14] 郭蓉蓉,张汝华,马信辉,郭森垚. 近交叉口路中式快速公交站点选址优化[J]. 山东大学学报 (工学版), 2021, 51(3): 61-67.
[15] 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[6] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .