您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 91-97.doi: 10.6040/j.issn.1672-3961.0.2018.347

• 机器学习与数据挖掘 • 上一篇    下一篇

基于奇异值分解行人对齐网络的行人重识别

张继(),金翠,王洪元*(),陈首兵   

  1. 常州大学信息科学与工程学院, 江苏 常州 213164
  • 收稿日期:2018-08-14 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 王洪元 E-mail:27106976@qq.com;hywang@cczu.edu.cn
  • 作者简介:张继(1981—),男,江苏常州人,讲师,硕士研究生,主要研究方向为计算机视觉.E-mail: 27106976@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61572085);国家自然科学基金资助项目(61806026);国家自然科学基金资助项目(61806026)

Pedestrian recognition based on singular value decomposition pedestrian alignment network

Ji ZHANG(),Cui JIN,Hongyuan WANG*(),Shoubing CHEN   

  1. School of Information Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
  • Received:2018-08-14 Online:2019-10-20 Published:2019-10-18
  • Contact: Hongyuan WANG E-mail:27106976@qq.com;hywang@cczu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61572085);国家自然科学基金资助项目(61806026);国家自然科学基金资助项目(61806026)

摘要:

为解决行人重识别的训练数据集中自动检测出的行人图像背景过大和行人部分缺失的错位现象问题,使用空间变换网络层对图像错位进行处理。为优化整个网络的深度学习过程,提高图像检索能力,增加网络特征层,使用奇异值向量分解方法对其进行处理。将行人对齐网络和奇异向量分解相结合,构造奇异值分解行人对齐网络,既可解决图像错位问题,又提高图像特征的相似性度量的效果。在Market1501、CUHK03和DukeMTMC-reID数据集上进行试验,并与行人对齐网络和其他深度学习与非深度学习的行人重识别方法进行比较,试验结果中整个网络的平均检索精度和行人图像第一次匹配正确的概率平均达到了65%和80%左右,这表明奇异值分解行人对齐网络可以提高对行人匹配的效果。

关键词: 行人重识别, 奇异向量分解, 行人对齐, 深度学习, 空间变换网络

Abstract:

In order to solve the problem that the background of pedestrian image was too large and the part of pedestrian was missing in the training data set of pedestrian recognition, the spatial transformation network layer was used to process the image dislocation. In order to optimize the deep learning process of the whole network and improve the image retrieval ability, a feature layer was added to the network, and singular value vector decomposition was used to process it. By combining the pedestrian alignment network with the singular vector decomposition and constructing the singular value decomposition pedestrian alignment network, the image dislocation problem could be solved and the effect of similarity measurement of image features could be improved. Experiments were conducted on Market1501, CUHK03 and DukeMTMC-reID datasets, and compared with pedestrian alignment network and other pedestrian re-recognition methods of deep learning and non-deep learning. In the experimental results, the values of rank-1 and mAP mean average precision reached 80% and 65% on average, which indicated that singular value decomposition of pedestrian alignment network had certain benefits on pedestrian matching effect.

Key words: pedestrian recognition, singular vector decomposition, pedestrian alignment, deep learning, spatial transformation network

中图分类号: 

  • TP391

图1

奇异值分解行人对齐网络框架图"

表1

不同数据集中rank-1和mAP的试验结果"

网络 方法 Market1501数据集 DukeMTMC-reID数据集 CUHK03(labeled)数据集 CUHK03(detected)数据集
rank-1/% mAP/% rank-1/% mAP/% rank-1/% mAP/% rank-1/% mAP/%
第1条分支 PAN 80.17 59.14 65.2 44.99 31.14 29.80 30.50 29.04
ours 81.38 62.02 66.74 45.96 79.19 78.82 77.06 80.29
第3条分支 PAN 79.01 58.27 69.36 47.14 35.29 32.90 34.14 31.71
ours 80.17 60.85 69.07 48.86 78.55 79.12 78.68 81.41
整个网络 PAN 82.81 63.35 68.36 51.51 36.86 35.03 36.29 34.05
ours 83.41 65.09 75.54 52.20 79.63 80.45 78.35 81.22

表2

SVDNet和奇异值分解行人对齐网络rank-1的试验结果比较"

%
方法 Market1501 DuckMTMC-reID CUHK03(labeled) CUHK03(detected)
SVDNet 82.3 80.05 81.80 76.70
ours 83.41 75.54 79.63 78.35

表3

PAN和奇异值分解行人对齐网络rank-1的试验结果比较"

%
方法 Market1501 DuckMTMC-reID CUHK03(labeled) CUHK03(detected)
PAN 82.81 80.05 36.86 36.29
ours 83.41 75.54 79.63 78.35

表4

不同行人重识别方法在Market1501和CUHK03数据集上rank-1和mAP的试验结果比较"

%
方法 Market1501 CUHK03
rank-1 mAP rank-1 mAP
LOMO+XQDA 43.80 22.20 44.60 51.50
Siamese LSTM 61.60 35.30 57.30 46.30
Gated SCNN 65.90 39.60 61.80 51.30
DLCE 79.50 59.90 79.63 80.45
ours 83.41 65.09 79.52 81.34

表5

不同行人重识别方法在DukeMTMC-reID数据集上rank-1和mAP的试验结果比较"

%
方法 rank-1 mAP
Bow+kissme 25.1 12.2
LOMO+XQDA 30.8 17
Baseline 65.5 44.1
GAN 67.7 47.1
ours 75.54 52.2
1 ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: a benchmark[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Computer Society, 2015: 1116-1124.
2 WANG Hongyuan , DING Zongyuan , ZHANG Ji , et al. Person reidentification by semisupervised dictionary rectification learning with retraining module[J]. Journal of Electronic Imaging, 2018, 27 (4): 043043-1- 9.
3 NI Tongguang , DING Zongyuan , CHEN Fuhua , et al. Relative distance metric leaning based on clustering centralization and projection vectors learning for person re-identification[J]. IEEE Access, 2018, 6 (1): 11405- 11411.
4 丁宗元, 王洪元, 陈付华, 等. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54 (8): 1785- 1794.
DING Zongyuan , WANG Hongyuan , CHEN Fuhua , et al. Pedestrian weight recognition based on distance centralization and projection vector learning[J]. Computer Research and Development, 2017, 54 (8): 1785- 1794.
5 WANG Hongyuan, DING Zongyuan, NI Tongguang, et al. KL divergence based person re-identification using multivariate Gaussian distributions[C]//Proceedings of the 2017 4th Asian Conference on Pattern Recognition. Nanjing, China: Sponsorship, 2017: 417-422.
6 张文文, 王洪元, 万建武, 等. 基于稀疏学习的行人重识别算法[J]. 数据采集与处理, 2018, 33 (5): 855- 864.
ZHANG Wenwen , WANG Hongyuan , WAN Jianwu , et al. Pedestrian weight recognition algorithm based on sparse learning[J]. Data Acquisition and Processing, 2018, 33 (5): 855- 864.
7 NI Tongguang , GU Xiaoqing , WANG Honyuan , et al. Discirminative deep trasfer metric learning for cross-scenario person re-identification[J]. Journal of Electronic Imaging, 2018, 27 (4): 043026- 1.
8 陈首兵, 王洪元, 金翠, 等. 基于孪生网络和重排序的行人重识别[J]. 计算机应用, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223
CHEN Shoubing , WANG Hongyuan , JIN Cui , et al. Pedestrian weight recognition based on twin networks and reordering[J]. Computer Applications, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223
9 金翠, 王洪元, 陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报(工学版), 2018, 48 (6): 67- 73.
JIN Cui , WANG Hongyuan , CHEN Shoubing . Pedestrian weight recognition method based on random erasure pedestrian alignment network[J]. Journal of Shandong University(Engineering Science Edition), 2018, 48 (6): 67- 73.
10 DENTON E, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems. Montréal, Canada: IEEE Computer Society, 2014: 1269-1277.
11 ZHAO Liming, LI Xi, WANG Jingdong, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3219-3228.
12 ZHENG Zhedong, ZHENG Liang, YANG Yi. Pedestrian alignment network for large-scale person re-identification[J/OL].[2018-12-20]. https://arxiv.org/pdf/1707.00408.pdf.
13 SUN Yifan, ZHENG Liang, DENG Weijian. SVDnet for pedestrian retrieval[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3820-3828.
14 SU Chi, ZHANG Shiliang, XING Junliang, et al. Deep attributes driven multi-camera person re-identification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 475-491.
15 SARFRAZ M Saquib, SCHUMANN Arne, EBERLE Andreas, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 420-429.
16 GUO Yiluan, CHEUNG Ngai-man.. Efficient and Deep person re-identification using multi-level similarity[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA: IEEE Computer Society, 2018: 2335-2344.
17 HE Lingxiao, LIANG Jian, LI Haiqing, et al. Deep spatial feature reconstruction for partial person re-identification: alignment-free approach[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 7073-7082.
18 ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Honolulu, Hawaii: IEEE Computer Society, 2017: 3652-3661.
19 LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Boston, Massachusetts: IEEE Computer Society, 2015: 2197-2206.
20 VARIOR Rahulrama, SHUAI Bing, LU Jiwen, et al. A siamese long short-term memory architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision, . Amsterdam, the Netherlands: IEEE Computer Society, 2016: 135-153.
21 VARIOR Rahulrama, HALOI Mrinal, WANG Gang. Gated siamese convolutional neural network architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 791-808.
[1] 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17.
[2] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[3] 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71.
[4] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[5] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[6] 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29.
[7] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[8] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[9] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[10] 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79.
[11] 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89.
[12] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[13] 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7.
[14] 王旭晴,魏伟波,杨光宇,宋金涛,吕婷,潘振宽. 基于算法展开的图像盲去模糊深度学习网络[J]. 山东大学学报 (工学版), 2023, 53(6): 35-46.
[15] 王碧瑶,韩毅,崔航滨,刘毅超,任铭然,高维勇,陈姝廷,刘嘉巍,崔洋. 基于图像的道路语义分割检测方法[J]. 山东大学学报 (工学版), 2023, 53(5): 37-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[3] 王杉,李田泽 . 一种绕线转子感应电机控制的新方法[J]. 山东大学学报(工学版), 2008, 38(3): 86 -89 .
[4] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31 -36 .
[5] 张宏博,苗海涛,宋修广. 长期交通荷载作用下粉砂土累积变形本构模型构建及数值积分格式[J]. 山东大学学报(工学版), 2010, 40(2): 59 -65 .
[6] 夏茂森 郭庆强 张斌. 生产调度广义析取规划模型求解算法[J]. 山东大学学报(工学版), 2009, 39(6): 53 -57 .
[7] 李婧瑜,李歧强,侯海燕,杨立才 . 基于遗传算法的小波神经网络交通流预测[J]. 山东大学学报(工学版), 2007, 37(2): 109 -112 .
[8] 杨文东,朱金福,许俐. 基于航班连结树的机场停机位指派问题研究[J]. 山东大学学报(工学版), 2010, 40(2): 153 -158 .
[9] 隋斌,朱维申,李树忱 . 岩锚吊车梁轮压作用下的三维稳定性分析[J]. 山东大学学报(工学版), 2008, 38(1): 80 -83 .
[10] 梁塽,许洁萍*,李欣. 歌词与内容相结合的流行音乐结构分析[J]. 山东大学学报(工学版), 2010, 40(5): 77 -81 .