您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 107-113.doi: 10.6040/j.issn.1672-3961.0.2017.385

• 机械工程 • 上一篇    下一篇

CNN特征与BOF相融合的水下目标识别算法

权稳稳(),林明星*()   

  1. 山东大学机械工程学院, 山东 济南 250061
  • 收稿日期:2017-08-03 出版日期:2019-02-01 发布日期:2019-03-01
  • 通讯作者: 林明星 E-mail:qw13541179302@126.com;mxlin2000@163.com
  • 作者简介:权稳稳(1992—),女,河南洛阳人,硕士研究生,主要研究方向为机器视觉与图像处理. E-mail:qw13541179302@126.com

Algorithm of underwater target recognition based on CNN features with BOF

Wenwen QUAN(),Mingxing LIN*()   

  1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2017-08-03 Online:2019-02-01 Published:2019-03-01
  • Contact: Mingxing LIN E-mail:qw13541179302@126.com;mxlin2000@163.com

摘要:

为了改善作为低级表示的尺度不变特征变换(scale invariant feature transform, SIFT)匹配常出现的没有足够特征来防止假匹配的问题,提出在传统方法“词袋”(bag of features, BOF)算法中融合具有较好语义分割能力的卷积神经网络(convolution neural network, CNN)特征来提高识别率的方法。利用ImageCLEF网站的LifeCLEF鱼类视频,制作目标图像数据库。在caffe平台的Alexnet模型进行卷积神经网络的训练,提取图像库和查询图像的特征。利用训练好的CNN特征在Matlab软件进行识别试验验证,计算汉明距离来验证匹配效果。改变参数值来观察不同汉明距离阈值对水下目标识别结果的影响。自制图像库的试验表明,融合深度学习的特征可以有效提高BOF算法的水下目标识别率,对汉明距离阈值的选择需要根据实际情况选择合适的参数。

关键词: 水下目标识别, BOF, SIFT匹配, 卷积神经网络, 汉明距离

Abstract:

In order to prevent false matching problems of scale invariant feature transform (SIFT) matching as a low-level representation for lack of sufficient features, an improved bag of features (BOF) algorithm method combined with the convolution neural network (CNN) features was proposed, which had better semantic segmentation ability to enhance the recognition rates. The LifeCLEF fish video on ImageCLEF website was used to create our own target image databases. Convolution neural network was trained in the Alexnet architecture of caffe, and the features of image databases and query images were extracted. The trained CNN features were simulated in Matlab, and the hamming distance was calculated to verify the matching effect. In addition, the parameter values were changed to test the effect of different Hamming distance thresholds on target recognition results. The experiment of self-made image databases showed that the fusion of depth learning features could effectively improve the underwater target recognition rates of BOF algorithm, and the selection of Hamming distance thresholds required selecting the appropriate parameters according to the actual situation.

Key words: underwater target recognition, bag of features, scale invariant feature transform matching, convolution neural networks, Hamming distance

中图分类号: 

  • TP391

图1

融合CNN特征的水下目标识别方法框图"

图2

新图像库的鱼种类"

表1

训练、验证、测试图像数量"

类别 训练 验证 测试 训练验证总计
短身光鳃雀鲷
弓月蝴蝶鱼
黑带椒雀鲷
三带圆雀鲷
网纹圆雀鲷
小高鳍刺尾鱼
2 310
926
2 300
1 516
2 303
650
289
116
288
190
288
82
288
116
288
189
288
82
2 599
1 042
2 588
1 706
2 591
732
总计 10 005 1 253 1 251 11 258

表2

六种鱼类识别率(T=0.600)"

%
方法 BOF CNN BOF+Conv5 BOF+Fc6 BOF+Fc7
短身光鳃雀鲷
弓月蝴蝶鱼
黑带椒雀鲷
三带圆雀鲷
网纹圆雀鲷
小高鳍刺尾鱼
74.0
70.7
71.6
76.5
69.7
69.5
74.3
73.8
72.6
75.8
74.2
72.4
86.8
85.5
83.1
87.3
82.8
82.1
86.7
85.3
86.2
87.0
84.5
84.8
76.0
72.8
74.6
76.8
71.3
74.2
平均识别率 72.2 73.9 84.7 85.9 74.3

图3

汉明距离的分布"

图4

参数T对识别率的影响"

1 JAFFE J S , MOORE K D , MCLEAN J , et al. Underwater optical imaging: status and prospects[J]. Oceanography, 2001, 14 (3): 66- 76.
2 王士龙, 徐玉如, 万磊, 等. 基于边界矩和改进FCM聚类的水下目标识别[J]. 系统工程理论与实践, 2012, 32 (12): 2809- 2815.
WANG Shilong , XU Yuru , WANG Lei , et al. Underwater targets recognition based on contour moment and modified FCM algorithm[J]. System Engineering Theory and Practice, 2012, 32 (12): 2809- 2815.
3 FATAN M , DALIRI M R , MOHAMMAD S A , et al. Underwater cable detection in the images using edge classification based on texture information[J]. Measurement, 2016, 91, 309- 317.
doi: 10.1016/j.measurement.2016.05.030
4 乔曦.基于水下机器视觉的海参实时识别研究[D].北京:中国农业大学, 2017.
QIAO Xi. Sea cucumber identification in real-time based on underwater machine vision technique[D]. Beijing: China Agricultural University, 2017.
5 LOWE D G . Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
6 BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer Vision-ECCV 2006. Graz, Austria: Springer Berlin Heidelberg, 2006: 404-417.
7 ZHENG Z Z , YUN Z , YAN L X . Global and local exploitation for saliency using bag-of-words[J]. IET Computer Vision, 2014, 8 (4): 299- 304.
doi: 10.1049/iet-cvi.2013.0132
8 KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems. Lake Tahoe, Spain: IEEE, 2012: 1097-1105.
9 REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
10 LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
11 SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1-9.
12 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//CVPR 16: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Vegas, USA: IEEE, 2016: 770-778.
13 LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1337-1342.
14 EKANAYAKE J, PALLICKARE S. Map reduce for data intensive scientific analysis[C]//IEEE Science. Piscatway, USA: IEEE, 2008: 277-284.
15 LAZEBNIK S, SCHMID C, PONCE J. Video google: a text retrieval approach to object matching in videos[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006: 2169-2178.
16 SIVIC J, ZISSERMAN A. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of Ninth IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1470-1477.
17 JEGOU H , DOYZE M , SCHMID C . Improving bag of features for large scale image search[J]. International Journal of Computer Vision, 2010, 87 (3): 316- 336.
doi: 10.1007/s11263-009-0285-2
18 ZHANG G X , ZENG Z , ZHANG S W , et al. SIFT matching with CNN evidences for particular object retrieval[J]. Neurocomputing, 2017, 238, 399- 409.
doi: 10.1016/j.neucom.2017.01.081
19 RUSSAKOVSKY O , DENG J , SU H , et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2014, 115 (3): 211- 252.
20 CAMPBELL A T , MEER H G D , KOUNAVIS M E , et al. A survey of programmable networks[J]. ACM Computer Communications Review, 1999, 29 (2): 7- 23.
doi: 10.1145/505733
21 LI X, SHANG M, QIN H W, et al. Fast Accurate Fish detection and recognition of Underwater Images with Fast R-CNN[C]//Oceans. Washington, USA: IEEE, 2015: 1-5.
22 JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando, USA: arXiv, 2014: 675-678.
[1] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[2] 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76.
[3] 马翔悦,徐金东,倪梦莹. 基于多尺度特征模糊卷积神经网络的遥感图像分割[J]. 山东大学学报 (工学版), 2024, 54(3): 44-54.
[4] 迟云浩,杨璐,郭杰,郝凡昌,聂秀山. 基于注意力特征融合网络的手指静脉图像质量评价方法[J]. 山东大学学报 (工学版), 2023, 53(6): 56-62.
[5] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[6] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[7] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
[8] 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106.
[9] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[10] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[11] 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36.
[12] 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97.
[13] 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34.
[14] 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117.
[15] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[2] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[3] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[4] 关小军,韩振强,申孝民,麻晓飞,刘运腾 . 09CuPTiRE钢动态再结晶的热模拟实验与有限元模拟[J]. 山东大学学报(工学版), 2006, 36(5): 17 -20 .
[5] 张爱娟. 模拟体液中类骨羟基磷灰石的合成[J]. 山东大学学报(工学版), 2010, 40(3): 86 -90 .
[6] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[7] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[8] 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69 -72 .
[9] 赵勇 田四明 曹哲明. 宜万铁路复杂岩溶隧道施工地质工作方法[J]. 山东大学学报(工学版), 2009, 39(5): 91 -95 .
[10] 赵存明 沈斐敏. 公路隧道围岩级别变化的瑞利波速度判据分析[J]. 山东大学学报(工学版), 2009, 39(4): 34 -39 .