您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (6): 53-56.

• 控制科学与工程 • 上一篇    下一篇

基于双联支持向量机的入侵检测技术

王昊,华继学,范晓诗   

  1. 空军工程大学防空反导学院, 陕西 西安 710051
  • 收稿日期:2013-11-11 出版日期:2013-12-20 发布日期:2013-11-11
  • 作者简介:王昊(1989- ),男,江苏徐州人,硕士研究生,主要研究方向为网络与信息安全. E-mail:wh00701@163.com

Intrusion detection technology based on twin support vector machine

WANG Hao, HUA Ji-xue, FAN Xiao-shi   

  1. School of Air and Missile Defense, Air Force Engineering University, Xi′an 710051, China
  • Received:2013-11-11 Online:2013-12-20 Published:2013-11-11

摘要:

为提高网络入侵检测系统的性能,提出基于双联支持向量机的入侵检测方法。介绍网络入侵检测系统工作的基本原理;引入双联支持向量机和入侵检测分类器;构建基于双联支持向量机的入侵检测模型。仿真结果表明,该方法可以在样本数据很少的情况下,高速率、高精度地对计算机网络安全进行检测,适用于入侵检测系统。

关键词: 网络安全, 入侵检测, 支持向量机, 双联支持向量机

Abstract:

To improve the performance of network intrusion detection system, an intrusion detection method based on twin support vector machine(TWSVM) was proposed. The basic principle of network intrusion detection system was introduced, an intrusion detection classifier was proposed and an intrusion detection model based on TWSVM was put forward. Moreover, the intrusion detection system based on TWSVM  was tested by simulation. The experimental results showed that the intrusion detection method based on TWSVM was applicable to the intrusion detection system, for it could detect the computer network security at a high speed and high precision when there were rare sample data.

Key words: network security, intrusion detection, support vector machine, twin support vector machine

中图分类号: 

  • null
[1] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[2] 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98.
[3] 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82.
[4] 张海军,陈映辉. 语义分析及向量化大数据跨站脚本攻击智检[J]. 山东大学学报 (工学版), 2020, 50(2): 118-128.
[5] 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28.
[6] 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9.
[7] 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66.
[8] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[9] 肖苗苗,魏本征,尹义龙. 基于BFOA和K-means的复合入侵检测算法[J]. 山东大学学报(工学版), 2018, 48(3): 115-119.
[10] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[11] 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26.
[12] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[13] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[14] 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26.
[15] 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[6] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[9] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[10] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .