山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (6): 53-56.
王昊,华继学,范晓诗
WANG Hao, HUA Ji-xue, FAN Xiao-shi
摘要:
为提高网络入侵检测系统的性能,提出基于双联支持向量机的入侵检测方法。介绍网络入侵检测系统工作的基本原理;引入双联支持向量机和入侵检测分类器;构建基于双联支持向量机的入侵检测模型。仿真结果表明,该方法可以在样本数据很少的情况下,高速率、高精度地对计算机网络安全进行检测,适用于入侵检测系统。
中图分类号:
| [1] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [2] | 亓晓燕,刘恒杰,侯秋华,刘啸宇,谭延超,王连成. 融合LSTM和SVM的钢铁企业电力负荷短期预测[J]. 山东大学学报 (工学版), 2021, 51(4): 91-98. |
| [3] | 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82. |
| [4] | 张海军,陈映辉. 语义分析及向量化大数据跨站脚本攻击智检[J]. 山东大学学报 (工学版), 2020, 50(2): 118-128. |
| [5] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
| [6] | 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9. |
| [7] | 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66. |
| [8] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
| [9] | 肖苗苗,魏本征,尹义龙. 基于BFOA和K-means的复合入侵检测算法[J]. 山东大学学报(工学版), 2018, 48(3): 115-119. |
| [10] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
| [11] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
| [12] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
| [13] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
| [14] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
| [15] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
|