山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (3): 7-11.
李霞1,王连喜2,蒋盛益1
LI Xia1, WANG Lian-xi2, JIANG Sheng-yi1
摘要:
传统的特征选择方法基本上是以精度为优化目标,没有充分考虑数据样本类别分布倾斜性,在数据分布不平衡的数据集上性能表现不理想。在不平衡数据集上通过有放回的抽样方法独立地从数据集大类样本集中随机抽取多个样本子集,使每次随机抽取的样本数量与小类样本数量一致,然后将各抽取的样本子集分别与小类样本集组合成多个新的训练样本集。对多个新样本集的特征子集以集成学习的方式采用投票机制进行投票,数据集的最终特征子集以得票数目超过半数的特征共同组合而成。在UCI不平衡数据集上的实验结果显示,提出的方法表现出了较好的性能,是一种能够处理不平衡问题的有效特征选择方法。
| [1] | 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34. |
| [2] | 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57. |
| [3] | 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66. |
| [4] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [5] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [6] | 闵海根,雷小平,李杰,童星,吴霞,方煜坤. 基于双层混合集成的自动驾驶汽车故障检测[J]. 山东大学学报 (工学版), 2022, 52(6): 30-40. |
| [7] | 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75. |
| [8] | 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44. |
| [9] | 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7. |
| [10] | 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9. |
| [11] | 张宗堂,王森,孙世林. 一种针对不平衡数据分类的集成学习算法[J]. 山东大学学报 (工学版), 2019, 49(4): 8-13. |
| [12] | 汪嘉晨, 唐向红, 陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87. |
| [13] | 周荣翔,贾修一. 中文反语识别特征分析[J]. 山东大学学报 (工学版), 2019, 49(1): 41-46. |
| [14] | 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36. |
| [15] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
|