您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 22-29.doi: 10.6040/j.issn.1672-3961.0.2020.232

• • 上一篇    下一篇

融合Gabor特征与卷积特征的小样本行人重识别

傅桂霞,邹国锋*,毛帅,潘金凤,尹丽菊   

  1. 山东理工大学电气与电子工程学院, 山东 淄博 255049
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:傅桂霞(1985— ),女,山东潍坊人,讲师,博士,主要研究方向为行人身份识别和视觉跟踪技术. E-mail:fgx45101@163.com. *通信作者简介:邹国锋(1984— ),男,山东泰安人,讲师,博士,主要研究方向为行人身份识别和智能监控技术. E-mail:zgf841122@163.com.
  • 基金资助:
    淄博市张店区校城融合发展资助项目(118228);国家自然科学基金资助项目(61801272);中国博士后基金资助项目(2019M652440)

Small sample person re-identification combining Gabor features and convolution features

FU Guixia, ZOU Guofeng*, MAO Shuai, PAN Jinfeng, YIN Liju   

  1. College of Electrical &
    Electronic Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 针对视频监控环境下采集的可用行人图像数量有限,以及非可靠数据标注导致监督学习算法性能下降等问题,提出一种融合Gabor特征和卷积特征的无监督小样本行人重识别方法。采用Gabor变换提取多尺度、多方向行人纹理和边缘信息,实现小样本行人图像特征级数据增强,进一步通过特征编码消除冗余信息,提升相似度比对效率。采用卷积自编码网络提取行人非线性深度卷积特征,避免监督学习算法对数据标注的依赖性。融合两种异构特征用于行人相似度比对,实现小样本下行人特征数据的拓展,同时实现行人特征判别能力增强。在Market-1501和DukeMTMC-reID数据集的试验中rank-1准确度分别达到74%和67.1%,证明所提网络架构能有效提升小样本行人重识别的性能。

关键词: Gabor变换, 特征编码, 卷积自编码网络, 无监督学习, 小样本行人重识别

Abstract: In the video surveillance, the limited available person images and unreliable data annotation led to the performance degradation of supervised person re-identification. To solve these problems, we proposed an unsupervised small sample person re-identification method that integrated Gabor features and convolution features. Gabor transform was used to extract multi-scale and multi-direction person texture and edge information, so as to realize the data augmentation of small sample person images in feature level. The redundant information was eliminated by feature encoding to improve the efficiency of feature similarity calculation. The convolutional auto-encoder network was adopted to extract the nonlinear deep convolution feature of pedestrian, which avoided the dependence of supervised learning algorithm on data annotation. The fusion of two heterogeneous features was applied to person similarity comparison, which implemented the feature augmentation of small samples and the improvement of person feature discrimination ability. Experiments were implemented based on Market-1501 and DukeMTMC-reID datasets, the rank-1 accuracy reached 74% and 67.1% respectively. The experimental results showed that the proposed network framework effectively improved the performance of small sample person re-identification.

Key words: Gabor transform, feature encoding, convolutional auto-encoder network, unsupervised learning, small sample person re-identification

中图分类号: 

  • TP391
[1] BEDAGKAR G A, SHAH S K. A survey of approaches and trends in person re-identification[J]. Image and Vision Computing, 2014, 32(4):270-286.
[2] 李幼蛟,卓力,张菁,等. 行人再识别技术综述[J]. 自动化学报, 2018, 44(9): 1554-1568. LI Y J, ZHUO L, ZHANG J, et al. A survey of person re-identification[J]. Acta Automatica Sinica, 2018, 44(9): 1554-1568.
[3] LV J M, CHEN W H, LI Q, et al. Unsupervised cross-dataset person re-identification by transfer learning of spatial-temporal patterns[C] //Proceeding of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7948-7956.
[4] ZHONG Z, ZHENG L, ZHENG Z D, et al. CamStyle: a novel data augmentation method for person re-identi-fication[J]. IEEE Transaction on Image Processing, 2019, 28(3): 1176-1190.
[5] 金翠,王洪元,陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报(工学版),2018,48(6): 67-73. JIN Cui, WANG Hongyuan, CHEN Shoubing. Person re-identification based on random erasing pedestrian alignment network method[J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 67-73.
[6] CHEN Y C, ZHU X T, ZHENG W S, et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 392-408.
[7] ZHAO C R, WANG X K, MIAO D Q, et al. Maximal granularity structure and generalized multi-view discri-minant analysis for person re-identification[J]. Pattern Recognition, 2018, 79: 79-96.
[8] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C] //Proceeding of the 2016 Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016: 3630-3638.
[9] LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C] //Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 2197-2206.
[10] WANG H, GONG S, XIANG T. Unsupervised learning of generative topic saliency for person re-identification[C] //Proceedings of the 2014 British Machine Vision Conference. Nottingham, UK: Springer, 2014.
[11] YAN C, LUO M, LIU W, et al. Robust dictionary learning with graph regularization for unsupervised person re-identification[J]. Multimedia Tools and Applications, 2018, 77(3): 3553-3577.
[12] DAUGMAN J. Uncertainty relation for resolution in space, spatial, frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America, 1985, 2(7): 1160-1169.
[13] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[M]. Cambridge, Massachusetts, USA: MIT Press, 1986:533-536.
[14] MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C] //Proceedings of the 2011 International Conference on Artificial Neural Networks. Espoo, Finland: Springer, 2011: 52-59.
[15] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C] //Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015:1116-1124.
[16] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi camera tracking[C] //Proceedings of the 2016 European Conference on Computer Vision. Cham, Switzerland: Spr-inger, 2016: 17-35.
[17] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[18] NG A. Sparse auto-encoder[R]. Stanford University, USA: CS294A Lecture Notes, 2011, 72: 1-19.
[19] BENGIO Y, LAMBLIM P, POPPVIVI D, et al. Greedy layer-wise training of deep networks[C] //Proceedings of the 2007 Conference on Neural Information Processing Systems. Vancouver, Canada: NIPS, 2007: 153-160.
[20] RADFORD A, METZ, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C] //Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016: 1-16.
[1] 刘国军,范天祥,王乃正,张正达,齐广智. 基于高斯分布和Householder flow的无监督图嵌入算法[J]. 山东大学学报 (工学版), 2024, 54(4): 35-41.
[2] 闵海根,雷小平,李杰,童星,吴霞,方煜坤. 基于双层混合集成的自动驾驶汽车故障检测[J]. 山东大学学报 (工学版), 2022, 52(6): 30-40.
[3] 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115.
[4] 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126.
[5] 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[5] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[8] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[9] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .