山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 98-104.doi: 10.6040/j.issn.1672-3961.0.2018.348
摘要:
针对目前3D点云目标检测模型检测精度不高的问题,研究使用直接处理点云数据的F-PointNet模型检测汽车、行人和骑车人,并对模型进行微调,进一步提升模型的目标检测精度。试验中使用不同的参数初始化、
中图分类号:
| 1 | 薛瑞.基于RGB-D数据的点云配准[D].西安:长安大学, 2017. |
| XUE Rui. Point cloud registration based on RGB-D data[D]. Xi'an: Chang'an University, 2017. | |
| 2 | 赵熙.基于地面激光扫描面点云数据的三维重建方法研究[D].武汉:武汉大学, 2010. |
| ZHAO Xi. Research on 3D reconstruction method based on surface laser scanning point cloud data[D]. Wuhan: Wuhan University, 2010. | |
| 3 | MATURAN D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE Press, 2015: 922-928. |
| 4 | WU Z, SONG S, KHOSLA A, et al. 3d shapenets: a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE Press, 2015: 1912-1920. |
| 5 | LI B. 3D fully convolutional network for vehicle detection in point cloud[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE Press, 2017: 1513-1518. |
| 6 | WANG D Z, POSNER I, WANG D Z, et al. Voting for voting in online point cloud object detection[C]//Robotics: Science and Systems. Rome, Italy: IEEE Press, 2015: 1317-1325. |
| 7 | ENGELCKE M , RAO D , WANG D Z , et al. Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks[J]. ICRA, 2016, 1609, 1355- 1361. |
| 8 | LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (4): 640- 651. |
| 9 | QI C R, SU H, NIWBNER M, et al. Volumetric and multi-view cnns for object classification on 3d data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 5648-5656. |
| 10 | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Press, 2015: 945-953. |
| 11 | LI B, ZHANG T, XIA T. Vehicle detection from 3D lidar using fully convolutional network[C]//Robotics: Science and System. Ann Arbor, USA: IEEE Press, 2016: 1608-1616. |
| 12 | CHEN X , MA H , WAN J , et al. Multi-view 3D object detection network for autonomous driving[J]. Computer Vision and Pattern Recognition(CVPR), 2016, (10): 6526- 6534. |
| 13 |
GONZALEZ A , VAZQUEZ D , LOPEZ A M , et al. On-board object detection: Multicue, multimodal, and multiview random forest of local experts[J]. IEEE Transactions on Cybernetics, 2017, 47 (11): 3980- 3990.
doi: 10.1109/TCYB.2016.2593940 |
| 14 |
ENZWEILER M , GAVRILA D M . A multilevel mixture-of-experts framework for pedestrian classification[J]. Image Processing IEEE Transactions, 2011, 20 (10): 2967- 2979.
doi: 10.1109/TIP.2011.2142006 |
| 15 | QI C R, LIU W, WU C, et al. Frustum pointnets for 3d object detection from rgb-d data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 918-927. |
| 16 | CHARLES R Q, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 652-660. |
| 17 | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving: the KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Computer Society, 2012: 3354-3361. |
| 18 |
GEIGER A , LENZ P , STILLER C , et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237.
doi: 10.1177/0278364913491297 |
| 19 | ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 4490-4499. |
| 20 | KU J, MOZIFIAN M, LEE J, et al. Joint 3d proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE Press, 2018: 1-8. |
| [1] | 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17. |
| [2] | 索大翔,李波. 细粒度特征增强与尺寸匹配的光伏缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 9-17. |
| [3] | 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47. |
| [4] | 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71. |
| [5] | 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79. |
| [6] | 聂秀山,赵润虎,宁阳,刘新锋. 开放词汇目标检测方法综述[J]. 山东大学学报 (工学版), 2025, 55(1): 1-14. |
| [7] | 张曼,孙凯军,李翔,孙纪舟. 融合FasterNet和RepVGG的安全设备佩戴检测方法[J]. 山东大学学报 (工学版), 2024, 54(6): 19-28. |
| [8] | 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12. |
| [9] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [10] | 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43. |
| [11] | 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63. |
| [12] | 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11. |
| [13] | 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121. |
| [14] | 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79. |
| [15] | 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89. |
|