您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 22-27.doi: 10.6040/j.issn.1672-3961.3.2014.109

• 机器学习与数据挖掘 • 上一篇    下一篇

改进的室内三维模糊位置指纹定位算法

曾碧1,2, 毛勤1,2   

  1. 1. 广东工业大学计算机学院, 广东 广州 510000;
    2. 广东省物联网与控制专用芯片及系统智能化工程技术研究中心, 广东 广州 510000
  • 收稿日期:2014-10-08 修回日期:2015-05-11 出版日期:2015-06-20 发布日期:2014-10-08
  • 通讯作者: 毛勤(1991- ),女,湖南岳阳人,硕士研究生,主要研究方向为基于ZigBee的室内无线定位技术. E-mail:942407600@qq.com E-mail:942407600@qq.com
  • 作者简介:曾碧(1963- ),女,广东广州人,教授,博士,硕导, 主要研究方向为嵌入式系统与智能技术,智能计算与智能机器人. E-mail:272070973@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61173046);广东省自然科学基金资助项目(S2012040007326)

Improved indoor 3-D fuzzy position fingerprint localization algorithm

ZENG Bi1,2, MAO Qin1,2   

  1. 1. College of Computer Science, Guangdong University of Technology, Guangzhou 510000, Guangdong, China;
    2. Guangdong Provincial Research Center of Internet of Things, Control Special Chip and Intelligent System Engineering Technology, Guangzhou 510000, Guangdong, China
  • Received:2014-10-08 Revised:2015-05-11 Online:2015-06-20 Published:2014-10-08

摘要: 提出了改进的三维空间模糊指纹定位方法(ITF)。该方法首先采用高斯模型对样本节点和未知节点的RSSI值进行过滤,建立样本点的指纹数据库,并将传统的求解高次坐标问题转换成空间隶属度的问题。利用模糊匹配算法计算未知节点与指纹库中各个已知样本点的贴近度,通过贴近度权系数定位未知节点。实验结果表明该定位方法比传统定位算法在降低误差方面具有更高的性能。

关键词: 模糊匹配, RSSI(received signal strength indicator), 位置指纹, ITF(indoor three-dimensional fuzzy), 贴进度权系数, 高斯模型, 三维空间

Abstract: An improved indoor three-dimensional fuzzy position fingerprint localization method named ITF was proposed to improve the positioning accuracy. Gaussian model was used for filtering the received signal strength of sample nodes and unknown nodes to establish the fingerprint database for sample nodes. Then the problem of solving high order coordinates was transformed into the problem of space membership degree. The fuzzy neartude weights of unknown nodes and sample nodes were calculated, which could determine the coordinates of unknown points. The experimentalresult proved that ITF had higher performance in reducing the error than other traditional algorithms.

Key words: 3-D space, ITF(indoor three-dimensional fuzzy), RSSI(received signal strength indicator), fuzzy neartude weights, fuzzy matching, position fingerprint, Gaussian model

中图分类号: 

  • TP391
[1] 张顺扬. ZigBee无线传感器网络研究及仿真[D]. 广州:广东工业大学, 2008. ZHANG Shunyang. Research and simulation of zigbee wireless sensor network[D].Guangzhou:Guangdong University of Technology, 2008.
[2] 孙晓玲,李伟勤. 基于RFID的二维室内定位算法的实现[J]. 现代电子技术, 2010(24):90-92. SUN Xiaoling, LI Weiqin. The implementation of 2-D indoor location algorithm based on RFID[J]. Journal of Modern Electronic Technology, 2010(24):90-92.
[3] 高睿劼,黄鲁,朱警怡. UWB室内定位系统的射频收发机设计[J]. 微型机与应用,2013(13):87-89. GAO Ruijie, HUANG Lu, ZHU Jingyi. Design of RF transceiver in UWB positioning system[J]. Micro Computer & Applications, 2013(13):87-89.
[4] Joseph Huang, David Millman, Morgan Quigley, et al. Efficient, generalized indoor WiFi graph SLAM[J]. Robotics and Automation IEEE, 2011:1038-1043.
[5] 工福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J]. 软件学报, 2005(5):857-868. GONG Fubao, SHI Long, REN Fengyuan. Self-localization systems and algorithms for wireless sensor networks[J]. Journal of Software, 2005(5):857-868.
[6] 刘金龙.无线传感器网络TDOA定位算法研究[D].哈尔滨:哈尔滨工业大学,2011. LIU Jinglong. Research on TDOA localization algorithm in wireless sensor network[D]. Harbin:Harbin Institute of Technology, 2011.
[7] Carl M Wong, Geoffrey G Messier, Richard Klukas. Evaluating measurement-based AOA indoor location using WLAN infrastucture[C]//20th International Technical Meeting of the Satellite Division of the Institute of Navigation. Texas, USA:Fort Worth Convention Center, 2007, 4:1139-1145.
[8] 叶蔚.室内无线定位的研究[D].广州:华南理工大学, 2010. YE Wei. Research on indoor wireless positioning[D]. Guangzhou: South China University of Technology, 2010.
[9] 陈丽, 王学东, 孙晶晶, 等.基于改进高斯滤波的室内无线定位算法[J].电气自动化, 2014(3):31-33+53. CHEN Li, WANG Xuedong, SUN Jingjing, et al. Indoor wireless locatlization algorithm based on improved Gaussian Filter[J]. Electrical Automation, 2014(3):31-33+53.
[10] 朱剑, 赵海, 林凯, 等. 基于WSNs的模糊三角形定位模型研究[J].东北大学学报, 2010, 31(1):35-38. ZHU Jian, ZHAO Hai, LIN Kai, et al. Research on the fuzzy triangular localization model in WSNs[J]. Journal of Northeastern University, 2010, 31 (1):35-38.
[11] 熊志广,石为人,许磊, 等.基于加权处理的三边测量定位算法[J]. 计算机工程与应用, 2010, 46(22):99-102. XIONG Zhiguang, SHI Weiren, XU Lei, et al. Trilateration localization algorithm based on weighted disposal[J].Computer Engineering & Applications, 2010, 46(22):99-102.
[12] BULUSU N, HEIDEMANN J, ESTRIN D. GPS less low cost outdoor localization for very small devices[J]. IEEE Personal Communieations, 2000, 7(5):28-34.
[13] SU J. Location technology research under the environment of WLAN[J].WSEAS Transactions on Computers, 2007, 6(8):1050-1055.
[14] EDWARDS W K.Discovery systems in ubiquitous computing[J]. IEEE Pervasive Computing, 2006, 5(2):70-77.
[15] 周艳,李海成.基于RSSI无线空间网络定位算法[J].通信学报, 2009, 30(6):75-79. ZHOU Yan, LI Haicheng. Space localization algorithm based RSSI in wirless sensor networks[J]. Journal of Communication, 2009, 30(6):75-79.
[16] 董梅,杨曾,张健, 等.基于信号强度的无线局域网定位术[J].计算机应用, 2004, 24(12):49-52. DONG Mei, YANG Zeng, ZHANG Jian, et al. Signal strength based WLAN location determination technology[J]. Computer Applications, 2004, 24(12):49-52.
[17] 朱山,刘文予.室内无线传播及覆盖性能研究[D]. 武汉:华中科技大学, 2012. ZHU Shan, LIU Wenyu. Research on indoor wireless propagation and coverage performance[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[18] 陈振华,余永权,张瑞.模糊模式识别的几种模型研究[J].计算机技术与发展,2010(9):32-35. CHEN Zhenhua, YU Yongquan, ZHANG Rui. Research on several models of fuzzy pattern recognition[J]. Computer Technology & Development, 2010(9):32-35.
[19] SEOK H S, HWANG K B, ZHANG B T. Feature relevance network-based transfer learning for indoor location estimation[J]. IEEE Trans Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41(5):711-719.
[20] 邹杰,李珊君,陈晓明.一种改进的室内无线定位算法[J].计算机工程, 2011, 37(14):76-78. ZHOU Jie, LI Shanjun, CHEN Xiaoming. Improved indoor wireless localization algorithm[J]. Computer Engineering, 2011, 37(14):76-78.
[21] 杨博雄,倪玉华,刘琨, 等.基于加权三角质心RSSI算法的ZigBee室内无线定位技术研究[J].信号与系统,2012(11):31-35. YANG Boxiong, NI Yuhua, LIU Kun, et al. Study on ZigBee wireless location technology based on weighting triple centroid RSSI algorithm[J]. Signal Process & System, 2012(11):31-35.
[22] KUSHKI A, PLATANIOTIS K, VENETSANOPOULOS A. Kernel-based positioning in wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2007, 6(6):689-705.
[23] ALIMORADI A, PEZESHK S, NAEIM F.Fuzzy pattern classification of strong ground motion records[J]. Journal of Earthquake Engineering, 2005, 9(3):307-332.
[24] HUANG C T, WU C H, LEE Y N, et al. A novel indoor RSS-based position location algorithm using factor graphs[J]. IEEE Transactions on Wireless Communications, 2009, 8(6):3050-3058.
[25] ZARUBA G V. Indoor location tracking using RSSI readings from a single Wi-Fi access point[J].Wireless Networks, 2007, 13(2):221-235.
[1] 邓彬, 张宗包, 赵文猛, 罗新航, 吴秋伟. 基于云边协同和图神经网络的电动汽车充电站负荷预测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 62-69.
[2] 李二超, 张智钊. 在线动态订单需求车辆路径规划[J]. 山东大学学报 (工学版), 2024, 54(5): 62-73.
[3] 杨巨成, 魏峰, 林亮, 贾庆祥, 刘建征. 驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报 (工学版), 2024, 54(2): 1-12.
[4] 肖伟, 郑更生, 陈钰佳. 结合自训练模型的命名实体识别方法[J]. 山东大学学报 (工学版), 2024, 54(2): 96-102.
[5] 胡钢, 王乐萌, 卢志宇, 王琴, 徐翔. 基于节点多阶邻居递阶关联贡献度的重要性辨识[J]. 山东大学学报 (工学版), 2024, 54(1): 1-10.
[6] 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7.
[7] 樊禹江,黄欢欢,丁佳雄,廖凯,余滨杉. 基于云模型的老旧小区韧性评价体系[J]. 山东大学学报 (工学版), 2023, 53(5): 1-9, 19.
[8] 李颖,王建坤. 基于监督图正则化和信息融合的轻度认知障碍分类方法[J]. 山东大学学报 (工学版), 2023, 53(4): 65-73.
[9] 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69.
[10] 刘行,杨璐,郝凡昌. 基于多特征融合的手指静脉图像检索方法[J]. 山东大学学报 (工学版), 2023, 53(2): 118-126.
[11] 刘方旭,王建,魏本征. 基于多空间注意力的小儿肺炎辅助诊断算法[J]. 山东大学学报 (工学版), 2023, 53(2): 135-142.
[12] 于艺旋,杨耕,耿华. 连续复合运动的多模态层次化关键帧提取方法[J]. 山东大学学报 (工学版), 2023, 53(2): 42-50.
[13] 黄华娟,程前,韦修喜,于楚楚. 融合Jaya高斯变异的自适应乌鸦搜索算法[J]. 山东大学学报 (工学版), 2023, 53(2): 11-22.
[14] 张豪,李子凌,刘通,张大伟,陶建华. 融合社会学因素的模糊贝叶斯网技术预测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 23-33.
[15] 吴艳丽,刘淑薇,何东晓,王晓宝,金弟. 刻画多种潜在关系的泊松-伽马主题模型[J]. 山东大学学报 (工学版), 2023, 53(2): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[3] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[4] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[5] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[8] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[9] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[10] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .