您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (2): 23-28.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于卷积神经网络的木材缺陷识别

徐姗姗,刘应安*,徐昇   

  1. 南京林业大学信息科学与技术学院, 江苏 南京 210037
  • 收稿日期:2012-05-20 出版日期:2013-04-20 发布日期:2012-05-20
  • 通讯作者: 刘应安(1965- ),男,安徽寿县人,教授,博士,主要研究领域为数据挖掘,数理统计等.E-mail: lyastat@yahoo.com.cn
  • 作者简介:徐姗姗(1988- ),女,江苏扬州人,硕士研究生,主要研究方向为数据挖掘,数理统计等.E-mail: 529031585@qq.com
  • 基金资助:

    国家自然科学基金资助项目(30671639);江苏省自然科学基金资助项目(BK2009393)

Wood defects recognition based on the convolutional neural network

XU Shan-shan, LIU Ying-an*, XU Sheng   

  1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
  • Received:2012-05-20 Online:2013-04-20 Published:2012-05-20

摘要:

为提高木材缺陷识别率,提出一种基于卷积神经网络算法的识别方法。采用渐近式学习方法来确定训练样本数目,给出了对应的网络结构,降低了算法消耗的时间。试验结果表明,该方法无需对图像进行复杂的预处理,能识别多种木材缺陷,精度较高且复杂度较小,具有很好的鲁棒性,也克服传统算法的诸多固有缺点。

关键词: 卷积神经网络, 渐进式, 木材缺陷, 学习方法, 图像处理

Abstract:

To improve the efficiency of wood defects identification, a method based on the convolutional neural network was proposed. A convolutional neural network was presented to recognize the wood defect, and the numbers of training samples were determined by an incremental learning method; the corresponding network structure was designed, and the time consumption could be reduced. Experimental results showed that the preprocessing of a complex image was not needed, and the multiclass defects could be recognized with high accuracy, small complexity and good robustness, while the inherent shortcomings of the traditional algorithm were overcame.

Key words: wood defects, convolutional neural networks, image processing, learning methods, incremental

中图分类号: 

  • TP301
[1] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[2] 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76.
[3] 鲁志恒,霍延强,韩汶,杜聪,刘轶鹏,张宏博. 基于图像数据和碎石集料级配与用量的碎石集料空隙率快速检测方法[J]. 山东大学学报 (工学版), 2024, 54(6): 89-99.
[4] 马翔悦,徐金东,倪梦莹. 基于多尺度特征模糊卷积神经网络的遥感图像分割[J]. 山东大学学报 (工学版), 2024, 54(3): 44-54.
[5] 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69.
[6] 迟云浩,杨璐,郭杰,郝凡昌,聂秀山. 基于注意力特征融合网络的手指静脉图像质量评价方法[J]. 山东大学学报 (工学版), 2023, 53(6): 56-62.
[7] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[8] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[9] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
[10] 韩天雨,路长厚,李建美,尹昂,侯秋林. 利用图像处理技术测量丝杠螺距的机器视觉系统[J]. 山东大学学报 (工学版), 2022, 52(3): 80-85.
[11] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[12] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[13] 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106.
[14] 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99.
[15] 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[7] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[8] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[9] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .
[10] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .