您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 101-105.

• 论文 • 上一篇    下一篇

一种基于核主成分分析的图像超分辨率算法

颜子夜,陆耀,李建武,马跃   

  1. 北京理工大学计算机学院智能信息技术北京市重点实验室, 北京 100081
  • 收稿日期:2011-02-14 出版日期:2011-08-16 发布日期:2011-02-14
  • 作者简介:颜子夜(1980- ),男,北京人,博士研究生,主要研究方向为图像处理.E-mail:yanziye@bit.edu.cn

Kernel principal components analysis based super resolution method

YAN Zi-ye, LU Yao, LI Jian-wu, MA Yue   

  1. Beijing Laboratory of Intelligent Information Technology, School of Computer Science & Technology,
    Beijing Institute of Technology, Beijing 100081, China
  • Received:2011-02-14 Online:2011-08-16 Published:2011-02-14

摘要:

测试样本和训练样本集的匹配是基于学习的超分辨率算法中关键问题之一。本文方法通过将低分辨率的观察样本映射到高维的核空间中,实现测试样本和训练样本集的准确匹配,避免了基于学习的超分辨率算法中错误匹配问题,提高生成图像的质量。该算法包括:测试样本对训练样本集进行核主成分分析(kernel principal components analysis, KPCA); 利用距离约束算法得到在输入空间中的原像;最后将新生成的图像块进行重组,得到高分辨率的图像。在USPS数据集上进行的实验验证和对比分析表明:基于KPCA的图像超分辨率方法能够取得较好的超分辨率效果。

关键词: 超分辨率, 聚类, 核主成分分析, 距离约束

Abstract:

The match between the observed example and the training example set is one of the crucial problem in learning based super resolution. The proposed method can make the match more accurate by mapping the observation example of low resolution to the reproducing kernel Hilbert space, avoiding the wrong match in the learning based super resolution and improving the image guality. The algorithm is that first to apply KPCA to training examples to form a subspace, and then  project the observed example onto the subspace. The pre-images in input space are obtained using distance constraint algorithm. Finally, the high resolution image is obtained via the recombination of the produced image patches, Experimental results on USPS data set show this method is effective.

Key words: super resolution, clustering, kernel principal components analysis, distance constraint

[1] 李晓辉,刘小飞,孙炜桐,赵毅,董媛,靳引利. 基于车辆与无人机协同的巡检任务分配与路径规划算法[J]. 山东大学学报 (工学版), 2025, 55(5): 101-109.
[2] 陈素根,赵志忠. 融合局部截断距离及小簇合并的密度峰值聚类[J]. 山东大学学报 (工学版), 2025, 55(2): 58-70.
[3] 王梅,宋凯文,刘勇,王志宝,万达. DMKK-means——一种深度多核K-means聚类算法[J]. 山东大学学报 (工学版), 2024, 54(6): 1-7.
[4] 王丽娟,徐晓,丁世飞. 面向密度峰值聚类的高效相似度度量[J]. 山东大学学报 (工学版), 2024, 54(3): 12-21.
[5] 张鑫,费可可. 基于log鲁棒核岭回归的子空间聚类算法[J]. 山东大学学报 (工学版), 2023, 53(6): 26-34.
[6] 李兆彬,叶军,周浩岩,卢岚,谢立. 变异萤火虫优化的粗糙K-均值聚类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 74-82.
[7] 侯延琛,赵金东. 任意形状聚类的SPK-means算法[J]. 山东大学学报 (工学版), 2023, 53(2): 87-92.
[8] 程业超,刘惊雷. 自适应图正则的单步子空间聚类[J]. 山东大学学报 (工学版), 2022, 52(2): 57-66.
[9] 卢建云,张蔚,李林. 一种基于动态局部密度和聚类结构的聚类算法[J]. 山东大学学报 (工学版), 2022, 52(2): 118-127.
[10] 蒋桐雨, 陈帆, 和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8.
[11] 孟银凤,杨佳宇,曹付元. 函数型数据的分裂转移式层次聚类算法[J]. 山东大学学报 (工学版), 2022, 52(1): 19-27.
[12] 朱恒东, 马盈仓, 代雪珍. 自适应半监督邻域聚类算法[J]. 山东大学学报 (工学版), 2021, 51(4): 24-34.
[13] 朱昌明,岳闻,王盼红,沈震宇,周日贵. 主动三支聚类下的全局和局部多视角多标签学习算法[J]. 山东大学学报 (工学版), 2021, 51(2): 34-46.
[14] 解子奇,王立宏,李嫚. 块对角子空间聚类中成对约束的主动式学习[J]. 山东大学学报 (工学版), 2021, 51(2): 65-73.
[15] 李蓓,赵松,谢志佳,牛萌. 电动汽车虚拟储能可用容量建模[J]. 山东大学学报 (工学版), 2020, 50(6): 101-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[2] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[3] 王,张艳宁,申家振,刘俊成 . 基于信息测度和支持向量机的图像边缘检测[J]. 山东大学学报(工学版), 2006, 36(3): 95 -99 .
[4] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[5] 张恭孝,杨荣华 . 水杨醛缩甲基氨基硫脲Schiff碱配合物的合成与表征[J]. 山东大学学报(工学版), 2008, 38(3): 108 -111 .
[6] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15 -18 .
[7] 孙媛媛 徐衍亮 姚之宁. 旁磁制动单相感应电动机制动力的分析与计算[J]. 山东大学学报(工学版), 2009, 39(5): 120 -123 .
[8] 穴洪涛,田国会,李晓磊,路飞 . QR Code在多种类物体识别与操作中的应用[J]. 山东大学学报(工学版), 2007, 37(6): 25 -30 .
[9] 贝广霞,楼佩煌,叶文华,王晓梅 . 精密加工中圆柱度在机检测关键技术[J]. 山东大学学报(工学版), 2007, 37(5): 65 -67 .
[10] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31 -36 .