山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 56-59.
孙静宇,余雪丽,陈俊杰, 李鲜花
SUN Jing-yu, YU Xue-li, CHEN Jun-jie, LI Xian-hua
摘要:
特异性因子是数据的重要特征之一,常通过累计数据之间的差异得到,是面向特异性挖掘的核心概念,然而遇到了计算时间复杂度过高的问题。本文在分析已有特异性因子定义特点及其计算算法时间复杂度的基础上,指出应该基于采样的方法定义特异性因子。给出了一种基于采样的特异性因子定义,即采样特异性因子(sampled peculiarity factor,SPF),并提出了一种基于SPF的异常检测算法。在真实数据集上进行对比实验,结果表明:该算法在检测异常数据时,精度降低不明显,而运行效率得以较大提高,这说明基于采样定义特异性因子的方法可行和更为合理。本文还指出采用合适的采样方法可经进一步优化SPF的计算过程,进而节约占用CPU时间和满足实时性要求高的应用。
| [1] | 郑晓,陈鹤,周东傲,宫永顺. 基于视频描述增强和双流特征融合的视频异常检测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 110-119. |
| [2] | 周彦冰,马士伦,文益民. 基于图结构的概念漂移检测[J]. 山东大学学报 (工学版), 2025, 55(2): 88-96. |
| [3] | 王梅,宋凯文,刘勇,王志宝,万达. DMKK-means——一种深度多核K-means聚类算法[J]. 山东大学学报 (工学版), 2024, 54(6): 1-7. |
| [4] | 李岩,张子毅,王建柱. 基于特征点提取的RANSAC-ICP三维点云配准方法[J]. 山东大学学报 (工学版), 2024, 54(5): 144-154. |
| [5] | 白琳,俱通,王浩,雷明珠,潘晓英. 面向不平衡数据的提升均衡集成学习算法[J]. 山东大学学报 (工学版), 2024, 54(4): 59-66. |
| [6] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
| [7] | 侯月武,刘兆英,张婷,李玉鑑,孙长明. 基于改进的DUNet遥感图像道路提取[J]. 山东大学学报 (工学版), 2022, 52(4): 29-37. |
| [8] | 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14. |
| [9] | 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88. |
| [10] | 张妮,韩萌,王乐,李小娟,程浩东. 基于索引列表的增量高效用模式挖掘算法[J]. 山东大学学报 (工学版), 2022, 52(2): 107-117. |
| [11] | 朱安, 徐初. 一种使用并行交错采样进行超分辨的方法[J]. 山东大学学报 (工学版), 2020, 50(2): 10-16. |
| [12] | 杨思, 李思童, 张进东, 白羽. 高速光通信激光器带宽模型改进与并行计算优化[J]. 山东大学学报 (工学版), 2019, 49(1): 17-22. |
| [13] | 朱映雪,黄瑞章,马灿. 一种具有新主题偏向性的短文本动态聚类方法[J]. 山东大学学报 (工学版), 2018, 48(6): 8-18. |
| [14] | 赵亚楠,王新锋,李锐,陈天舒,薛丽坤,王文兴. 大气采样干燥技术除湿效果的测试与对比[J]. 山东大学学报(工学版), 2018, 48(4): 128-136. |
| [15] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
|