山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 80-88.doi: 10.6040/j.issn.1672-3961.0.2024.277
• 土木工程 • 上一篇
曹芙波1,张嘉仪1,张利凯2,李敦3,黄强4,赵波4,彭理渊5,田金亮1,王晨霞1*
CAO Fubo1, ZHANG Jiayi1, ZHANG Likai2, LI Dun3, HUANG Qiang4, ZHAO Bo4, PENG Liyuan5, TIAN Jinliang1, WANG Chenxia1*
摘要: 为研究盐冻环境对再生混凝土(recycled aggregate concrete, RAC)力学性能的影响,以强度等级、冻融循环次数和侵蚀盐种类为试验变量,结合宏观试验和微观试验,分析盐冻循环后RAC和普通混凝土(normal aggregate concrete, NAC)的宏观性能劣化机理。基于盐冻循环试验下RAC的相对动弹性模量,采用Wiener随机过程进行建模并分析可靠度的变化规律,预测RAC在盐冻环境下的使用寿命。结果表明:RAC的抗盐冻性劣于NAC,并且RAC的强度等级越高抗盐冻性能越好;3.7%质量分数的Na2SO4溶液组在盐冻循环60次前抗盐冻性较好,相对动弹性模量损失率仅为1.72%,90次盐冻循环后RAC因损伤累积导致抗盐冻性迅速下降,相对动弹性模量损失率达17.16%;微观分析发现,盐冻循环后, RAC强度等级越低,盐冻后内部结构越松散,裂缝宽度越大。依据Wiener随机过程所建模型分析可知,RC50-C模型可靠度持续时间最长,在华北地区抗冻耐久性寿命预估可达53 a。
中图分类号:
| [1] ZHENG R J, ZHANG F B, WANG D C, et al. Basic mechanical properties of geopolymer recycled concrete with iron ore tailings sand[J]. Journal of Building Engineering, 2025, 114: 114331. [2] ZHANG F B, LI X L, WANG D C. Mechanical behavior of self-compacting recycled concrete reinforced with recycled disposable medical mask fiber[J]. Construction and Building Materials, 2024, 429: 136314. [3] 王晨霞, 王金旭, 王宇飞, 等. 硅灰对再生混凝土抗盐冻性能及微观结构的影响[J]. 长江科学院院报, 2024, 41(6): 171-177. WANG Chenxia, WANG Jinxu, WANG Yufei, et al. Effect of silica fume on the salt frost resistance and microstructure of recycled concrete[J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(6): 171-177. [4] LI M, CAO F B, WANG C X, et al. Probabilistic fatigue life and damage mechanisms of recycled coarse aggregate concrete under flexural loading[J]. Journal of Building Engineering, 2025: 114683. [5] LIN Y J, FENG X, ZHANG Z P. Microscopic simulation of thermo-mechanical behaviors in recycled concrete under freeze-thaw action[J]. Construction and Building Materials, 2023, 409: 133892. [6] 李秋义, 王忠星, 岳公冰, 等. 氯盐侵蚀对再生混凝土多重界面显微结构的影响[J]. 硅酸盐通报, 2017, 36(1):27-32. LI Qiuyi, WANG Zhongxing, YUE Gongbing, et al. Effect of chloride salt erosion on multiple interface microstructure of recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 27-32. [7] BAI W F, SONG Z, YUAN C Y, et al. Study on mechanical properties and damage mechanism of recycled concrete containing silica fume in freeze-thaw environment[J]. Construction and Building Materials, 2023, 375: 130872. [8] KAZMI S M S, MUNIR M J, WU Y F, et al. Effect of different aggregate treatment techniques on the freeze-thaw and sulfate resistance of recycled aggregate concrete[J]. Cold Regions Science and Technology, 2020, 178: 103126. [9] 李恒, 郭庆军, 王家滨, 等. 再生混凝土界面结构及耐久性综述[J]. 材料导报, 2020, 34(13): 13050-13057. LI Heng, GUO Qingjun, WANG Jiabin, et al. Meso-/micro-structure of interfacial transition zone and durability of recycled aggregate concrete: a review[J]. Materials Reports, 2020, 34(13): 13050-13057. [10] 冯博, 刘青, 钱永久. 高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析[J]. 西南交通大学学报, 2023, 58(5): 1083-1089. FENG Bo, LIU Qing, QIAN Yongjiu. Durability analysis of high-performance concrete under chloride salt erosion and freeze-thaw cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. [11] 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304. YAO Weijing, LIU Yushan, WANG Tingya, et al. Performance degradation and microscopic structure of rubber / concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304. [12] CHEN S J, REN J X, LI Y G, et al. Macroscopic and mesoscopic deterioration behaviors of concrete under the coupling effect of chlorine salt erosion and freezing-thawing cycle[J]. Materials, 2021, 14(21): 6471. [13] 张学鹏, 张戎令, 王小平, 等. 基于Wiener过程理论的盐渍土中混凝土损伤演化及寿命预测[J]. 建筑材料学报, 2023, 26(11): 1192-1199. ZHANG Xuepeng, ZHANG Rongling, WANG Xiaoping, et al. Damage evolution and life prediction of concrete in saline soil based on Wiener process theory[J]. Journal of Building Materials, 2023, 26(11): 1192-1199. [14] 路承功, 乔宏霞, 魏智强, 等. 盐渍土地区混凝土加速损伤劣化机理及基于Wiener过程可靠性分析[J].中国矿业大学学报, 2021, 50(2): 265-272. LU Chenggong, QIAO Hongxia, WEI Zhiqiang, et al. Accelerated damage and deterioration mechanism of concrete in saline soil area and reliability analysis based on Wiener process[J]. Journal of China University of Mining & Technology, 2021, 50(2): 265-272. [15] 董伟, 王雪松, 计亚静, 等. 碳化-盐冻作用下风积沙混凝土损伤劣化机理及寿命预测[J]. 建筑材料学报, 2023, 26(6): 623-630. DONG Wei, WANG Xuesong, JI Yajing, et al. Damage deterioration mechanism and life prediction of aeolian sand concrete under carbonation and salt freezing[J]. Journal of Building Materials, 2023, 26(6): 623-630. [16] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2024[S]. 北京: 中国建筑工业出版社, 2024: 26-27. [17] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019: 121-126. [18] 张田梅, 孙全胜. 冻融与混合氯盐作用下混凝土抗冻性试验研究[J]. 世界地震工程, 2016, 32(4): 105-110. ZHANG Tianmei, SUN Quansheng. Experimental research on frost resistance of concrete with cyclic freeze-thaw subjoining mixed chloride[J]. World Earthquake Engineering, 2016, 32(4): 105-110. [19] 肖前慧, 李阳阳, 邱继生, 等. 冻融与硫酸盐侵蚀耦合作用下不同骨料取代率再生混凝土损伤研究[J].地震工程与工程振动, 2020, 40(4): 101-107. XIAO Qianhui, LI Yangyang, QIU Jisheng, et al. Damage of recycled concrete with different aggregate substitution rates under the coupling action of freeze-thaw and sulfate erosion[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(4): 101-107. [20] 甘磊, 刘源, 沈振中, 等. 硫酸盐侵蚀和冻融循环作用下混凝土损伤演化规律[J]. 华中科技大学学报(自然科学版), 2023, 51(11):134-141. GAN Lei, LIU Yuan, SHEN Zhenzhong, et al. Damage evolution law of concrete under sulfate attack and freeze-thaw cycle[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2023, 51(11): 134-141. [21] 席红兵, 李柏生. 硫酸盐—冻融共同作用下隧道衬砌支护喷射混凝土劣化性能研究[J]. 隧道建设(中英文), 2022, 42(7): 1219-1226. XI Hongbing, LI Baisheng. Deterioration performance of tunnel lining support concrete under sulfate-freeze-thaw interaction[J]. Tunnel Construction, 2022, 42(7): 1219-1226. [22] 乔宏霞, 朱彬荣, 路承功, 等. 基于Wiener随机过程的混凝土加速寿命试验[J]. 建筑材料学报, 2016, 19(6): 1023-1027. QIAO Hongxia, ZHU Binrong, LU Chenggong, et al. Accelerated life test of concrete based on Wiener stochastic process[J]. Journal of Building Materials, 2016, 19(6): 1023-1027. [23] 吴多明, 汪金满, 王鑫, 等. 玻璃粉/硅粉复掺对混凝土腐蚀环境下耐久性的影响[J]. 兰州理工大学学报, 2022, 48(3): 27-34. WU Duoming, WANG Jinman, WANG Xin, et al. Effect of glass powder/silica fume mixture on durability of concrete under corrosive environment[J]. Journal of Lanzhou University of Technology, 2022, 48(3): 27-34. [24] 李金玉, 彭小平, 邓正刚, 等. 混凝土抗冻性的定量化设计[J]. 混凝土, 2000(12): 61-65. LI Jinyu, PENG Xiaoping, DENG Zhenggang, et al. Quantitative design on the frost-resistance of concrete[J]. Concrete, 2000(12): 61-65. [25] 王晨霞, 刘路, 曹芙波, 等. 冻融循环后再生混凝土力学性能试验研究[J]. 建筑结构学报, 2020, 41(12):193-202. WANG Chenxia, LIU Lu, CAO Fubo, et al. Experimental study on mechanical properties of recycled concrete after freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41(12): 193-202. |
| [1] | 胡瑶瑶,张圣涛,肖玉帅,宋士茂,张吉哲. 钢渣及钢纤维对沥青混合料微波加热与路用性能影响研究[J]. 山东大学学报 (工学版), 2025, 55(5): 154-164. |
| [2] | 薛刚,邱永康,秦政博,董伟. 盐溶液干湿循环作用下钢渣细骨料混凝土的耐久性[J]. 山东大学学报 (工学版), 2025, 55(5): 130-139. |
| [3] | 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113. |
| [4] | 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38. |
| [5] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
| [6] | 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71. |
| [7] | 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79. |
| [8] | 谭忠盛,黄成造 ,刘恒,朋改非 . 大跨公路隧道结构耐久性分析[J]. 山东大学学报(工学版), 2008, 38(3): 18-22 . |
|
||