您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2026, Vol. 56 ›› Issue (1): 72-79.doi: 10.6040/j.issn.1672-3961.0.2024.266

• 土木工程 • 上一篇    

基于大三轴试验的高速液压夯处治粉土地基力学特性

江大海1,刘亚珍2,齐迪1,吕斌1,宫海霞1,王楚怡2,张宏博2   

  1. 1.齐鲁高速公路股份有限公司, 山东 济南 250101;2.山东大学齐鲁交通学院, 山东 济南 250002
  • 发布日期:2026-02-03
  • 作者简介:江大海(1978— ),男,山东安丘人,工程师,主要研究方向为高速公路建设管理. E-mail:1015919373@qq.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2024ME078)

Mechanical characteristics of rapid impact compaction technology treating pulverised soil foundations based on large triaxial tests

JIANG Dahai1, LIU Yazhen2, QI Di1, LÜ Bin1, GONG Haixia1, WANG Chuyi2, ZHANG Hongbo2   

  1. JIANG Dahai1, LIU Yazhen2, QI Di1, LÜ
    Bin1, GONG Haixia1, WANG Chuyi2, ZHANG Hongbo2(1. Qilu Expressway Co., Ltd., Jinan 250101, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Published:2026-02-03

摘要: 为揭示高速液压夯处治粉土地基的力学特性,通过模拟不同夯击能作用,开展压实粉土室内大三轴试验,确定不同夯击能及围压条件下粉土应力-应变规律,并基于邓肯-张模型确定计算力学参数。结果表明,随着夯击能的增大,粉土试件峰值应力增大,其中经150 kJ能级处治后的粉土地基峰值应力最大可达396 kPa,为70 kJ能级处治地基的1.3~1.5倍,不同夯击能条件下,150 kJ能级处治后的地基剪缩现象最为明显;同夯击能级条件下,随着围压的增加,粉土试件的峰值应力增大,且峰值应力对应的应变增大,150 kJ夯击能级处治后的土体在200 kPa围压下的峰值应力可达530 kPa,为相同处治条件100 kPa围压下的2倍。参考邓肯-张计算模型,计算了不同夯击能处治后粉土地基的力学参数,研究成果为高速液压夯技术推广应用提供理论支撑。

关键词: 高速液压夯, 粉土地基, 室内大三轴试验, 剪切特性, 邓肯-张模型

Abstract: To reveal the mechanical characteristics of rapid impact compaction treatment on pulverized soil foundations, an indoor triaxial test was conducted on compacted pulverized soil. This test simulated the effects of different tamping energies, determined the stress-strain behavior of pulverized soil under varying tamping energies and confining pressures, and calculated the mechanical parameters based on the Duncan-Chang model. The results showed that as tamping energy increases, the peak stress of the pulverized soil specimens also increases. Specifically, the peak strain of the pulverized soil foundation treated with 150 kJ of tamping energy could reach up to 396 kPa, which was 1.3 to 1.5 times greater than that of the foundation treated with 70 kJ. The shrinkage of the foundation after treatment at 150 kJ of tamping energy level was most pronounced in the impact tamping. Moreover, under the same tamping energy level, the peak stress of the pulverized soil specimens increased with the rise in confining pressure, with the peak stress corresponding to the strain of the specimen. For instance, at a confining pressure of 200 kPa, the peak stress of the soil treated with 150 kJ of tamping energy could reach 530 kPa, which was double that observed under the same treatment conditions at a confining pressure of 100 kPa. Using the Duncan-Chang calculation model, the mechanical parameters of the pulverized soil foundation after treatment with different tamping energies were calculated. These research findings provided theoretical support for the promotion and application of RIC technology.

Key words: rapid impact compaction, pulverized soil foundations, indoor large triaxial test, shear characteristics, Duncan-Chang model

中图分类号: 

  • U416.1
[1] 窦启文. 快速液压夯实技术在不良地基中的应用分析[J]. 建材技术与应用, 2022(2): 15-17. DOU Qiwen. Application analysis of rapid hydraulic tamping technology in bad foundation[J]. Reseach & Application of Building Materials, 2022(2): 15-17.
[2] 庄仲欣. 高速液压夯实技术在高速铁路路基工程中的应用研究[J]. 路基工程, 2018(3): 153-156. ZHUANG Zhongxin. Application research of rapid hydraulic compaction techniques in high-speed railway subgrade engineering[J]. Subgrade Engineering, 2018(3): 153-156.
[3] 董金玉, 李日运, 孙文怀, 等. 快速夯实法(RIC)在高速公路高填方及台背填土施工中的技术研究[J]. 工程地质学报, 2008(3): 135-139. DONG Jinyu, LI Riyun, SUN Wenhuai, et al. Study of RIC construction technology for dynamic consolidation of high embankment and abutment backside fill soil in highway[J]. Journal of Engineering Geology, 2008(3):135-139.
[4] 刘明华, 王吉庆. 高速液压夯实机补强台背路基的施工工艺及工程应用[J]. 公路与汽运, 2016(4): 217-219. LIU Minghua, WANG Jiqing. Construction process and engineering application of high-speed hydraulic compaction machines for reinforcing backfill subgrades[J]. Highways & Automotive Applications, 2016(4): 217-219.
[5] 曹斌, 刘岩. 高速液压夯实机在高速公路路基填筑中的应用[J]. 公路, 2016, 61(11): 71-75. CAO Bin, LIU Yan. Application of high-speed hydraulic compactors in highway subgrade filling[J]. Highway, 2016, 61(11): 71-75.
[6] 李玉华. 浅谈高速液压夯实机在路基施工中的补强夯实作用[J]. 现代工业经济和信息化, 2015, 5(7): 47-48. LI Yuhua. Introduction to high speed hydraulic rammer ramming role in construction of the roadbed[J]. Modern Industrial Economy and Informationization, 2015, 5(7): 47-48.
[7] 贺志军, 阿斯嘎, 邹金锋. 加筋含细粒土砂的大型三轴试验分析[J]. 铁道科学与工程学报, 2019, 16(10): 2451-2458. HE Zhijun, A Siga, ZOU Jinfeng. Research for reinforced fine-grained sand based on large-scale triaxial tests[J]. Journal of Railway Science and Engineering, 2019, 16(10): 2451-2458.
[8] 石熊, 张家生, 孟飞, 等. 改良粗粒土填料大型三轴试验[J]. 中南大学学报(自然科学版), 2015, 46(2): 645-652. SHI Xiong, ZHANG Jiasheng, MENG Fei, et al. Large-scale triaxial test on modified coarse-grained fillers[J]. Journal of Central South University(Science and Technology), 2015, 46(2): 645-652.
[9] VUKADIN V. The improvement of the loosely deposited sand silts with the rapid impact compacton technique on Breice test sites [J].Engineering Geology, 2013(160): 69-80.
[10] JIA M, YANG Y, LIU B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils[J]. Granular Matter, 2018, 20(4): 76.
[11] 李晋, 崔言晨, 姜鹏, 等. 快速液压夯动力补强效果无损评价试验[J]. 科学技术与工程, 2022, 22(9): 3744-3751. LI Jin, CUI Yanchen, JIANG Peng, et al. Test on nondestructive evaluation of dynamic reinforcing effect of rapid hydraulic impactor[J]. Science Technology and Engineering, 2022, 22(9): 3744-3751.
[12] 周志军, 张志鹏, 郭涛, 等. 黄土路基补强分层压实度检测方法[J]. 铁道科学与工程学报, 2020, 17(12): 3052-3062. ZHOU Zhijun, ZHANG Zhipeng,GUO Tao,et al. Layered compactness detection method of reinforcement the of loess subgrade[J]. Journal of Railway Science and Engineering, 2020, 17(12): 3052-3062.
[13] 中华人民共和国交通部. 公路土工试验规程: JTG E40—2007[S]. 北京: 人民交通出版社, 2007.
[14] 宋修广, 张宏博, 王松根, 等. 黄河冲积平原区粉土路基吸水特性及强度衰减规律试验研究[J]. 岩土工程学报, 2010, 32(10): 1594-1602. SONG Xiuguang, ZHANG Hongbo, WANG Songgen, et al. Hydrophilic characteristics and strength decay of silt roadbed in Yellow River alluvial plain[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1594-1602.
[15] ANDERSEN K H, SCHJETNE K. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay[J]. Journal of Geotechnical & Geoenvi-ronmental Engineering, 2012, 139(7): 1140-1155.
[16] 殷德顺, 王保田, 王云涛. 不同应力路径下的邓肯-张模型模量公式[J]. 岩土工程学报, 2007(9): 1380-1385. YIN Deshun, WANG Baotian, WANG Yuntao. Tangent elastic modulus of Duncan-Chang model for different stress paths[J].Chinese Journal of Geotechnical Engineering, 2007(9):1380-1385.
[1] 崔新壮,金青,丁桦 . 一种修正的莫尔-库仑本构模型及其应用[J]. 山东大学学报(工学版), 2006, 36(2): 122-125 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!