您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 16-28.doi: 10.6040/j.issn.1672-3961.0.2015.148

• 控制科学与工程 • 上一篇    下一篇

广义扩展大系统的鲁棒分散有限时间关联镇定

李小华, 严慰, 刘洋   

  1. 辽宁科技大学电子与信息工程学院, 辽宁鞍山 114051
  • 收稿日期:2015-05-19 修回日期:2015-11-02 出版日期:2015-12-20 发布日期:2015-05-19
  • 作者简介:李小华(1964-),女,河南郑州人,教授,博士,主要研究方向为复杂大系统结构与控制,工业过程建模与控制.E-mail:lixiaohua6412@163.com
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(61403177)

Decentralized finite-time robust connective stabilization for large-scale descriptor systems with expanding construction

LI Xiaohua, YAN Wei, LIU Yang   

  1. School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
  • Received:2015-05-19 Revised:2015-11-02 Online:2015-12-20 Published:2015-05-19

摘要: 研究一类广义扩展大系统的分散有限时间鲁棒关联镇定问题。建立了扩展广义大系统的数学模型,利用稳定性理论和线性矩阵不等式方法推导了扩展后大系统基于状态反馈和动态输出反馈的分散有限时间关联镇定的充分条件,在不改变原广义大系统分散控制律的基础上给出了满足条件的新加入子系统的鲁棒分散关联镇定控制器设计方法。采用一个广义互联系统数值算例对提出的设计方法进行了仿真研究,结果显示扩展系统可以被有限时间关联镇定,从而验证了该方法的可行性和有效性。

关键词: 鲁棒关联稳定性, 分散控制, 线性矩阵不等式, 有限时间镇定, 广义扩展结构大系统

Abstract: Robust decentralized finite-time connective stabilization for a class of large-scale descriptor systems with expanding construction was studied. The mathematic model of the expanding large-scale descriptor system was established. The sufficient conditions of decentralized finite-time connective stabilization for this kind of systems were deduced based on state feedback and dynamic output feedback by using stability theory and LMI(linear matrix inequality) method. And the design method of the robust decentralized connective stabilization controller meeting the conditions for the newly added subsystem was given without any change on the decentralized control laws of the original large-scale descriptor system. Simulation on a numerical example for interconnected descriptor systems showed that the expanding system could be finite-time connective stabilized, and the feasibility and effectiveness of the proposed method were verified.

Key words: large-scale descriptor systems with expanding construction, finite-time stabilization, LMI, robust connective stability, decentralized control

中图分类号: 

  • TP273
[1] SILJAK D D. Large-scale dynamic systems:stability and structure[M]. New York:North-Holland, 1978.
[2] SILJAK D D, STIPANOVIC D M. Organically-structured control[C]//Proceedings of the American Control Conference(2001). Arlington, VA:ACC, 2001:2736-2742.
[3] GATTIE N. A connective stability analysis of complex system simulation and control via multi-agent systems[C]//Proceedings of the Second Starting AI Researchers' Symposium. Amsterdam:IOS Press, 2004:26-37.
[4] SUN S L, PING P, CHEN C T. Connective stability of a kind of singular nonlinear large-scale dynamical systems[C]//Proceedings of IEEE International Symposium on Industrial Electronics. Shiga, Japan:the IEEE Press, 2009:1731-1736.
[5] TAN X L, IKEDA M. Decentralized stabilization for expanding construction of large-scale systems[J]. IEEE Trans Automatic Control, 1990, 35(6):644-651.
[6] Li X H, GUO H Y. Robust decentralized connective stabilization for expanding construction of large-scale systems[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao, China:the IEEE Press, 2008:2011-2015.
[7] 李小华, 刘洋, 姜本源, 等. 基于参数优化的扩容电力系统结构稳定的自愈控制[J]. 中山大学学报:自然科学版,2014, 53(6):140-145. LI Xiaohua, LIU Yang, JIANG Benyuan, et al. Self-healing control of expansion power systems in structural stability based on parameter optimization[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(6):140-145.
[8] DORATO P. Short time stability in linear time-varying systems[C]//Proof the IRE Int Convention Record(Part4). New York:Institute of Radio Engineers, 1961:83-87.
[9] YAO J, FENG J E, SUN L, et al. Input-output finite-time stability of time-varying linear singular systems[C]//Proceedings of the 30th Chinese Control Conference.Yantai, China:the CCC, 2011:62-66.
[10] XU Y, ZHU S Q, MA S P. Finite-time stability and stabilization for a class of nonlinear discrete-time singular switched systems[C]//Proceedings of 2014 IEEE 53rd Annual Conference on Decision and Control(CDC).
[S.l.]:[s.n.], 2014:4918-4923.
[11] 孙甲冰,程兆林. 一类不确定线性奇异系统的有限时间控制问题[J]. 山东大学学报:工学版,2004, 39(2):1-6. SUN Jiabing, CHENG Zhaolin. Finite-time control for one kind of uncertain linear singular systems[J]. Journal of Shandong University:Engineering Science, 2004, 39(2):1-6.
[12] AMATO F, ARIOLA M, COSENTINO C. Finite-time stabilization via dynamic output feedback[J]. Automatica, 2006, 42(2):337-342.
[13] 龚文振. 离散广义系统的有限时间控制[J]. 工程数学学报, 2013, 30(2):217-230. GONG Wenzhen. Finite-time control of the discrete-time singular systems[J]. Chinese Journal of Engineering Mathematics, 2013, 30(2):217-230.
[14] ZHANG Y Q, SHI P, NGUANG S K, et al. Robust finite-time H control for uncertain discrete-time singular systems with Markovian jumps[J]. Control Theory & Applications, IET, 2014, 8(12):1105-1111.
[15] XU S Y, LAIN J. Robust control and filtering of singular systems[M].New York:Springer Berlin Heidelberg, 2006.
[16] 李小华. 复杂大系统的有机结构控制及其应用研究[D]. 沈阳:东北大学,2006. LI Xiaohua. Organically-structured control of complex large-scale systems and its applications[D]. Shenyang:Northeastern University, 2006.
[17] 辛道义. 有限时间稳定性分析与控制设计研究[D]. 济南:山东大学, 2008. XIN Daoyi. Research on finite-time stability analysis and control design[D]. Jinan:Shandong University, 2008.
[18] MASUBUCHI I, KAMITANE Y, OHARA A, et al. Control for descriptor systems:a matrix inequalities approach[J]. Automatica, 1997, 33(4):669-673.
[19] EL-K'EBIR B. Control of singular systems with random abrupt changes[M]. New York:Springer Berlin Heidelberg, 2008.
[20] BOYD S, GHAOUI L E, FERON E. Linear matrix inequalities in system and control theory[M]. Philadelphia:SIAM, 1994:23-24.
[1] 王琦,孙竹梅,刘少虹,白建云. 基于现场总线兼容技术的除尘系统一体化改造[J]. 山东大学学报(工学版), 2018, 48(4): 37-41.
[2] 武炎明,王瑞云,王占山. 基于中间变量观测器的多智能体故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 96-102.
[3] 周绍伟. 随机Markov跳跃系统有限时间稳定性[J]. 山东大学学报(工学版), 2016, 46(2): 78-84.
[4] 周丽娜1,刘晓华2. 不确定中立型随机时滞系统的鲁棒记忆非脆弱H∞控制[J]. 山东大学学报(工学版), 2013, 43(3): 49-56.
[5] 何荣福1,肖民卿2*. 圆形区域极点约束下的δ算子时滞系统鲁棒L2-L∞控制[J]. 山东大学学报(工学版), 2013, 43(1): 69-79.
[6] 刘国彩,刘玉常,鞠培军. 变时滞神经网络的时滞相关全局渐近稳定新判据[J]. 山东大学学报(工学版), 2010, 40(4): 53-56.
[7] 焦建民1 ,孙小军1 ,吴保卫2 . 带有非线性扰动的不确定奇异时滞系统的保性能控制[J]. 山东大学学报(工学版), 2009, 39(2): 64-69.
[8] 冯刚, M. Chen. 基于双线性矩阵不等式的H∞无穷离散时间模糊控制器设计(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 37-51.
[9] 王岩青,钱承山,姜长生 . 中立型不确定变时滞系统的一个时滞相关鲁棒稳定性判据[J]. 山东大学学报(工学版), 2008, 38(1): 116-120 .
[10] 王进野,姚瑞英,张纪良,王其军 . 一类模糊双曲正切模型稳定性控制[J]. 山东大学学报(工学版), 2007, 37(2): 63-66 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!