山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (4): 41-47.
张丽,赵春霞*
ZHANG Li, ZHAO Chun-xia*
摘要:
针对在传统的快速地图创建和同时定位算法(fast simultaneous location and map building, FastSLAM)中采用扩展卡尔曼滤波器(extend Kalman filter, EKF)来估计机器人位姿和地图创建所带来的线性化误差的问题,本研究提出了一种基于迭代EKF的FastSLAM2.0算法——IFastSLAM算法。该算法将迭代思想运用到EKF中,同时采用迭代EKF来估计粒子从而完成机器人地图创建和自身定位。实验结果证明,该算法提高了粒子的估计精度从而减缓粒子退化问题,并更好的维持了地图的一致性。
No related articles found! |
|