您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 机器学习与数据挖掘 •    下一篇

基于联赛评价和知识提取的交互式遗传算法

巩敦卫,孙晓燕,任洁   

  1. 中国矿业大学信息与电气工程学院, 江苏 徐州 221116
  • 收稿日期:2009-03-30 修回日期:1900-01-01 出版日期:2009-04-16 发布日期:2009-04-16
  • 通讯作者: 巩敦卫

Interactive genetic algorithms with tournament evaluation and evolutionary knowledge extraction

GONG Dunwei, SUN Xiaoyan, REN Jie   

  1. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China
  • Received:2009-03-30 Revised:1900-01-01 Online:2009-04-16 Published:2009-04-16

摘要:

交互式遗传算法基于用户评价获得进化个体适应值,是解决性能指标难以(无法)显式描述的复杂优化问题的有效方法.为有效解决交互式遗传算法的用户疲劳问题,提高算法的整体性能,提出了一种基于有向图提取进化知识的高性能交互式遗传算法.首先,基于进化种群构造联赛评价对,并确定进化个体的占优关系;然后,建立有向图,利用有向图节点的出度和入度计算进化个体适应值,并确定优势个体和建筑块;最后,基于建筑块生成新个体,参与种群后续进化.在服装进化设计系统中的应用结果表明,本文算法可有效减轻用户疲劳,提高算法的搜索能力.

关键词: 优化, 遗传算法, 交互, 有向图, 建筑块

Abstract:

Interactive genetic algorithms, whose individual’s fitness is assigned by a user, are effective methods to solve a complicated optimization problem with its indices being hard or even impossible to be explicitly described. In order to alleviate user fatigue and improve the algorithm’s performance, we presented an efficient interactive genetic algorithm with extracting evolutionary knowledge based on a directed graph. First, some pairs of tournament evaluated evolutionary individuals were constructed according to the evolutionary population, and the dominance relations of these individuals were obtained. Then a directed graph was built, an individual’s fitness was calculated by using the indegree and outdegree of its corresponding vertex of the directed graph, and some superior individuals as well as building blocks were obtained. Finally, some new individuals were generated based on these building blocks and involved in the subsequent evolutions. The proposed algorithm was applied in a fashion evolutionary design system and the results showed the algorithm’s advantage in alleviating user fatigue and improving search performance.

Key words: optimization, genetic algorithms, interaction, directed graph, building block

[1] 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15.
[2] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报(工学版), 2018, 48(5): 103-108.
[3] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[4] 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87.
[5] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[6] 田靖,李红伟,陈瑞,于文涛. 一种轴向电磁轴承的结构优化与有限元分析[J]. 山东大学学报(工学版), 2018, 48(2): 107-113.
[7] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[8] 刘志清,高浩瀚,安沫霖,张学凯. 基于完工概率修正的关键链法项目进度优化[J]. 山东大学学报(工学版), 2018, 48(1): 104-111.
[9] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[10] 褚晓东,唐茂森,高旭,刘伟生,贾善杰,李笋. 基于集中式信息系统的主动配电网鲁棒优化调度[J]. 山东大学学报(工学版), 2017, 47(6): 20-25.
[11] 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6.
[12] 孙东磊,李山,李雪亮,韩学山,李文博,杨思. 适应源荷不确定性的参考电网区间优化方法[J]. 山东大学学报(工学版), 2017, 47(6): 26-31.
[13] 张岐松,傅钧,史朝晖,杨潇,贾春娟,黄玉龙. 荷电状态优化对风储系统供电可靠性的影响[J]. 山东大学学报(工学版), 2017, 47(6): 95-99.
[14] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[15] 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!