您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 论文 • 上一篇    

基于EMD的激光超声信号去噪方法

孙伟峰1, 彭玉华1, 许建华2   

  1. 1. 山东大学信息科学与工程学院, 山东 济南 250100;
    2. 中国电子科技集团公司第41研究所, 山东 青岛 266555
  • 收稿日期:2008-05-08 修回日期:1900-01-01 出版日期:2008-10-16 发布日期:2008-10-16
  • 通讯作者: 孙伟峰

A de-noising method for laser ultrasonic signal based on EMD

SUN Wei-feng1, PENG Yu-hua1, XU Jian-hua2   

  1. 1. School of Information Science and Engineering, Shandong University, Jinan, 250100, China;
    2. The 41st Research Institute of China Electronics Technology Group Corporation, Qingdao, 266555, China
  • Received:2008-05-08 Revised:1900-01-01 Online:2008-10-16 Published:2008-10-16
  • Contact: SUN Wei-feng

摘要: 基于连续均方误差的准则,提出了一种基于经验模态分解(EMD)的激光超声信号去噪方法.该方法将经验模态分解得到的固有模态函数(IMF)分为信号分量起主导作用,模态与噪声分量起主导作用模态,利用反映信号主要结构的模态对信号进行部分重建实现去噪.将该方法应用于测试信号与实际激光超声信号的去噪,实验结果表明该方法能够有效地去除噪声,并且不受主观参数的影响,具有自适应的特点.

关键词: 经验模态分解, 激光超声信号, 信号去噪

Abstract: Based on the criterion of consecutive mean square error, a de-noising method for laser ultrasonic signals based on empirical mode decomposition(EMD) was proposed. This method can divide the intrinsic mode functions (IMFs) derived from EMD into signal dominant modes and noise dominant modes, then the modes reflecting the important structures of a signal were combined together to form partially reconstructed de-noised signal. Simulations were conducted for simulated signals and a real laser ultrasonic signal using this method. Experimental results indicate that this method can efficiently and adaptively remove noise, and this method can not be affected by subjective parameters.

Key words: empirical mode decomposition, laser ultrasonic signal, signal de-noising

中图分类号: 

  • TN911.7
[1] 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15.
[2] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
[3] 穆峰, 常发亮, 蒋沁宇. 基于改进EMD算法的信号滤波[J]. 山东大学学报(工学版), 2015, 45(3): 35-42.
[4] 王丽,周以齐,于刚,米永振. 基于EEMD和ICA方法的驾驶室内噪声源时频分析[J]. 山东大学学报(工学版), 2014, 44(2): 80-88.
[5] 王艳超,杨立才*,刘澄玉. 基于模板匹配和镜像延拓的两阶段经验模态分解算法[J]. 山东大学学报(工学版), 2012, 42(6): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!