• 论文 • 上一篇
孙伟峰1, 彭玉华1, 许建华2
SUN Wei-feng1, PENG Yu-hua1, XU Jian-hua2
摘要: 基于连续均方误差的准则,提出了一种基于经验模态分解(EMD)的激光超声信号去噪方法.该方法将经验模态分解得到的固有模态函数(IMF)分为信号分量起主导作用,模态与噪声分量起主导作用模态,利用反映信号主要结构的模态对信号进行部分重建实现去噪.将该方法应用于测试信号与实际激光超声信号的去噪,实验结果表明该方法能够有效地去除噪声,并且不受主观参数的影响,具有自适应的特点.
中图分类号:
| [1] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15. |
| [2] | 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95. |
| [3] | 穆峰, 常发亮, 蒋沁宇. 基于改进EMD算法的信号滤波[J]. 山东大学学报(工学版), 2015, 45(3): 35-42. |
| [4] | 王丽,周以齐,于刚,米永振. 基于EEMD和ICA方法的驾驶室内噪声源时频分析[J]. 山东大学学报(工学版), 2014, 44(2): 80-88. |
| [5] | 王艳超,杨立才*,刘澄玉. 基于模板匹配和镜像延拓的两阶段经验模态分解算法[J]. 山东大学学报(工学版), 2012, 42(6): 69-73. |
|
||