您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 107-113.doi: 10.6040/j.issn.1672-3961.0.2017.609

• • 上一篇    下一篇

一种轴向电磁轴承的结构优化与有限元分析

田靖,李红伟*,陈瑞,于文涛   

  1. 山东大学电气工程学院, 山东 济南 250061
  • 收稿日期:2017-12-14 出版日期:2018-04-20 发布日期:2017-12-14
  • 通讯作者: 李红伟(1979— ),男,湖北老河口人,讲师,博士,主要研究方向为磁悬浮轴承技术与应用. E-mail:lhw08@sdu.edu.cn E-mail:tianjing_anny@163.com
  • 作者简介:田靖(1993— ),女,河北邢台人,硕士研究生,主要研究方向为磁悬浮轴承技术与应用. E-mail:tianjing_anny@163.com

Structural optimization and finite element analysis of a type of axial AMBs

TIAN Jing, LI Hongwei*, CHEN Rui, YU Wentao   

  1. School of Electrical Engineering, Shandong University, Jinan 25006l, Shandong, China
  • Received:2017-12-14 Online:2018-04-20 Published:2017-12-14

摘要: 给定转子推力盘直径和转子芯轴直径,设计一种传统结构的轴向电磁轴承。保持定子内孔与转轴之间的径向漏磁气隙不变,采用有限元软件仿真定子线槽结构参数对轴向电磁轴承的磁场分布及承载力的影响,并从磁路理论角度对结果进行误差分析。在承载力最大的线槽结构参数下,只改变芯轴直径,仿真分析径向漏磁气隙对轴向电磁轴承的磁场分布及承载力的影响。研究结果表明:随着定子线槽轴向长度与径向长度比(长宽比)的增加,承载力先增大后减小;当长宽比为5~10时,漏磁不是最小,但承载力较大且基本不受长宽比变化的影响,最大电磁力为理论电磁力的88.7%;随着径向漏磁气隙与轴向气隙比(气隙比)的增加,承载力增加,但增量越来越小,当气隙比为13.3时,仿真电磁力达到理论电磁力的97.0%,当气隙比大于13.3后,承载力随气隙比的增加非常有限。

关键词: 优化设计, 漏磁, 轴向电磁轴承, 承载力, 线槽结构

Abstract: One typical structure of axial active magnetic bearings(AMBs)was designed with the given diameters of the shaft and rotor thrust. The influence of the slot structure dimensions on the magnetic field distribution and the bearing force of axial AMB was simulated by using an electromagnetic finite element software when the radial airgap between the stator inner hole and the shaft was unchanged. And the error analysis was given by constructing a magnetic circuit model of the axial AMB. Given the chosen optimized slot dimensions, the influences of the radial airgap of the stator on the magnetic field distribution and the bearing force were analyzed with different rotor shaft diameters. The results showed that the bearing force increased first and then decreased with the increase of the ratio of the axial length to the radial length of the slot. The radial magnetic flux leakage was not the smallest when the ratio was between 5 and 10 but the bearing force was large and stable, and the biggest force was about 88.7% of the theory. With the increase of the ratio of the radial airgap to the axial suspended airgap(airgap ratio), the bearing force increased, but the increment was getting smaller. When the airgap ratio was 13.3, the simulated bearing force was 97.0% of the theory. When the airgap ratio was more than 13.3, the increment of the bearing force was very limited, so the impact was not significant.

Key words: electromagnetic force, magnetic flux leakage, slot structure, axial active magnetic bearing, optimization design

中图分类号: 

  • TB472
[1] 闫颖鑫,董宏林,段广仁.轴向磁悬浮轴承的结构设计[J]. 轴承,2006(7): 8-10. YAN Yingxin, DONG Honglin, DUAN Guangren. Structure design of axial magnetis suspension bearing[J]. Bearing, 2006(7): 8-10.
[2] 袁崇军,曹杰,杨涌.电磁轴承的结构优化设计[J]. 机械科学与技术, 1995(5):29-36. YUAN Chongjun, CAO Jie, YANG Yong. The optimum design of electromagnetic bearing structure[J]. Mechanical Science and Technology for Aerospace Engineering, 1995(5): 29-36.
[3] 田杰,刘建明,王勇.轴向电磁轴承定子线槽形状对电磁力影响的研究[J]. 机械研究与应用,2007,20(5):42-43. TIAN Jie, LIU Jianming, WANG Yong. Study on the effect that the shape of axial electromagnetism bearing stator trunking on the electromagnetism force[J]. Mechanical Research & Application, 2007, 20(5): 42-43.
[4] 江大川,刘淑琴,虞烈,等.电磁推力支承系统结构参数设计的研究[J]. 西安交通大学学报,1997,31(12):100-105. JIANG Dachuan, LIU Shuqin, YU Lie, et al. Study for designing the constructional parameters of electromagnetic thrust supporting systems[J]. Journal of Xi'an Jiaotong University, 1997, 31(12): 100-105.
[5] 王澄泓,汪希平,周朝暾,等.电磁推力轴承磁场的有限元计算及漏磁分析[J]. 机械设计与研究,2004,20(5):52-55. WANG Chenghong, WANG Xiping, ZHOU Zhaotun, et al. FEM caculation of magnetic field and analysis on flux leakage for magnetic thrust bearing[J]. Machine Design and Research, 2004, 20(5): 52-55.
[6] 胡业发, 周祖德, 江征风. 磁力轴承的基础理论与应用[M].北京: 机械工业出版社, 2006.
[7] 蔡敏,朱熀秋.轴向磁轴承参数设计与性能分析[J]. 微电机,2010,43(10):22-25. CAI Min, ZHU Huangqiu. Parameter design and performance analysis for axial magnetic bearing[J]. Micromotors, 2010, 43(10): 22-25.
[8] GERHARD Schweitzer, MASLEN Eric H. Magnetic bearings: theory, design, and application to rotating machinery[M]. Beijing: Mechanical Industry Press, 2012.
[9] GERHARD Schweitzer, BLEULER Hannes, ALFONS Traxler. Active magnetic bearing foundation, performance and application[M]. Beijing: New Times Press, 1997.
[10] 杨芳芳,吕建超.推力磁轴承的优化设计与有限元分析[J]. 燃气涡轮试验与研究,2010,23(2):43-45. YANG Fangfang, LYU Jianchao. Optimization design and finite element analysis for thrust magnetic bearings[J]. Gas Turbine Experiment and Research, 2010, 23(2): 43-45.
[11] 汪希平,张直明,于良.轴向磁悬浮轴承的力学特性分析[J]. 应用力学学报,2000,17(3):29-34. WANG Xiping, ZHANG Zhiming, YU Liang. Analysis on dynamic performances of magnetic levitated thrust Bearing[J]. Chinese Journal of Applied Mechanics, 2000, 17(3): 29-34.
[12] CHIBA A, FUKAO T, ICHIKAWA O, et al. Magnetic bearings and bearingless drives[M]. Tokyo: Newnes, 2005: 65-84.
[13] 龙志强,罗昆,王水泉,等.轴向磁轴承电磁参数的计算[J]. 磁性材料及器件,2000,31(5):10-13. LONG Zhiqiang, LUO Kun, WANG Shuiquan, et al. The calculation of electromagnetic parameters of axial magnetic bearing[J]. Journal of Magnetic Materials and Devices, 2000, 31(5): 10-13.
[14] 文湘隆,胡业发,陈龙.一种轴向磁力轴承定子结构参数的确定方法[J]. 轴承,2005(7):1-3. WEN Xianglong, HU Yefa, CHEN Long. A method to calculate structural parameters for stator of axial active magnetic bearings [J]. Bearing, 2005(7): 1-3.
[15] 赵博, 张洪亮. Ansoft12在工程电磁场中的应用[M]. 北京:中国水利水电出版社, 2013.
[16] 赵韩,李露,王勇,等.电磁推力轴承结构分析[J]. 机床与液压,2006(5):68-70. ZHAO Han, LI Lu, WANG Yong, et al. Structural analysis of an electromagnetic thrust-bearing[J]. Machine Tool & Hydraulics, 2006(5): 68-70.
[17] 刘国强, 赵凌志, 蒋继娅. Ansoft工程电磁场有限元分析[M]. 北京:电子工业出版社, 2005.
[18] 王世山,王德林.大型有限元软件ANSYS在电磁领域的使用[J]. 高压电器,2002, 38(2):27-31. WANG Shishan, WANG Delin, LI Yanming. Using software ansys to analyze electromagnetic process[J]. High Voltage Apparatus, 2002, 38(2): 27-31.
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81-85.
[2] 李连祥,李先军. 不同扩径体数量、位置对支盘桩承载力的影响[J]. 山东大学学报(工学版), 2016, 46(5): 88-94.
[3] 张新国1,许崇芳1*,王金双1,严纪丛1,韩廷武1,2. 无电感蔡氏电路设计方法与应用[J]. 山东大学学报(工学版), 2010, 40(6): 134-138.
[4] 周海鹰1,李立新2,陈廷国1. 地铁隧道衬砌管片承载力试验及计算方法[J]. 山东大学学报(工学版), 2010, 40(4): 84-87.
[5] 管延华1,2,蒋斌松1,宋修广2,杨勇3. FRP-螺栓联合加固RC梁受剪承载能力试验研究[J]. 山东大学学报(工学版), 2010, 40(2): 82-87.
[6] 徐春一1, 2,刘明2*,王广林2. 蒸压粉煤灰多孔砖砌体偏心受压承载力试验研究[J]. 山东大学学报(工学版), 2010, 40(2): 71-77.
[7] 肖利利 陈蔚芳 叶文华 杨琪 刘世豪. “箱中箱”结构立滑板的有限元分析及其优化设计[J]. 山东大学学报(工学版), 2010, 40(1): 78-83.
[8] 王立鹏1,巩思锋2.

钢筋混凝土梁电化学锈蚀及受弯承载力试验研究

[J]. 山东大学学报(工学版), 2009, 39(2): 113-117.
[9] 王俊英,杜金辉,吕培茹,张媛,慕金波 . 山东省水生态环境承载力探讨[J]. 山东大学学报(工学版), 2008, 38(5): 94-98 .
[10] 赵益军 . 基于遗传算法与神经网络相结合的区域水资源承载力综合评价[J]. 山东大学学报(工学版), 2006, 36(4): 81-83 .
[11] 林彦,魏东 . 铸钢空心球管节点的破坏机理分析与承载力影响因素[J]. 山东大学学报(工学版), 2006, 36(3): 103-107 .
[12] 林彦,魏东 . 铸钢空心球管节点的破坏机理分析与承载力影响因素[J]. 山东大学学报(工学版), 2006, 36(3): 103-107 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!