山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (3): 6-12.
冯爱民1,刘学军1,陈斌2
FENG Ai-min1, LIU Xue-jun1, CHEN Bin2
摘要:
目标数据呈簇分布、基于超平面的单类分类器要求嵌入结构信息时,必须分别考虑各簇数据对超平面的影响,为此,提出可用于簇分布的结构大间隔单类分类器(structural large margin one-class classifier,SLMOCC)。该算法通过分别约束各簇数据到超平面的马氏距离,并最大化最小马氏间隔,保证目标数据落入正半空间的同时,充分利用数据的簇结构信息,通过序列二次锥规划优化方法线性搜索到最优超平面。为捕捉数据簇结构,SLMOCC采用凝聚型层次聚类并借助拐点确定聚类数目,最后通过人工数据和UCI数据集与相关算法比较,验证了SLMOCC的有效性。
[1] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[2] | 陶志伟,张莉. 基于马氏距离的分段矢量量化时间序列分类[J]. 山东大学学报(工学版), 2016, 46(3): 51-57. |
[3] | 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18. |
[4] | 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51. |
|