您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 44-54.doi: 10.6040/j.issn.1672-3961.0.2023.001

• 机器学习与数据挖掘 • 上一篇    

基于多尺度特征模糊卷积神经网络的遥感图像分割

马翔悦1,徐金东1,倪梦莹2*   

  1. 1.烟台大学计算机与控制工程学院, 山东 烟台 264005;2.烟台大学物理与电子信息学院, 山东 烟台 264005
  • 发布日期:2024-06-28
  • 作者简介:马翔悦(1997— ),女,山东滨州人,硕士研究生,主要研究方向为图像分割. E-mail:maxiangyue_ytu@163.com. *通信作者简介:倪梦莹(1980— ),女,山东荣成人,讲师,硕士,主要研究方向为图像处理与模式识别. E-mail:nimengying@ytu.edu.cn
  • 基金资助:
    国家自然科学基金面上资助项目(62072391);国家自然科学基金地区科学基金资助项目(62066013)

Remote sensing image segmentation based on multi-scale feature fuzzy convolutional neural network

MA Xiangyue1, XU Jindong1, NI Mengying2*   

  1. 1. School of Computer and Control Engineering, Yantai University, Yantai 264005, Shandong, China;
    2. School of Physics and Electronic Information, Yantai University, Yantai 264005, Shandong, China
  • Published:2024-06-28

摘要: 为解决高分辨率遥感图像“同谱异物、同物异谱”的不确定性以及大量空间信息利用率低的问题,提出一种基于多尺度特征的模糊卷积神经网络模型。该模型在长跳跃连接部分加入模糊学习模块去除噪声特征,缓解类别间的不确定性;利用多孔空间金字塔池化融合多尺度特征,提取完备的空间上下文信息,提升分割性能。试验结果表明,该模型在Potsdam数据集和Vaihingen数据集上的整体准确度分别达到92.65%和93.19%,明显优于现有流行的深度学习模型,能够显著提升高分辨率遥感图像的语义分割性能。

关键词: 模糊学习, 多孔空间金字塔池化, 多尺度特征, 编码器-解码器, 卷积神经网络

中图分类号: 

  • TP751
[1] 侯月武,刘兆英,张婷,等. 基于改进的DUNet遥感图像道路提取[J]. 山东大学学报(工学版), 2022, 52(4):29-37. HOU Yuewu, LIU Zhaoying, ZHANG Ting, et al. Road extraction from remote sensing images based on improved DUNet[J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 29-37.
[2] KOUZIOKA G N, PERAKIS K. Decision support system based on artificial intelligence, GIS and remote sensing for sustainable public and judicial management[J]. European Journal of Sustainable Development, 2017, 6(3): 397-404.
[3] SU T F, ZHANG S W. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(1): 256-276.
[4] HUANG X, WEN D, LI J, et al. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery[J]. Remote Sensing of Environment, 2017, 196(1): 56-75.
[5] ZHAO T Y, XU J D, CHEN R, et al. Remote sensing image segmentation based on the fuzzy deep convolutional neural network[J]. International Journal on Remote Sensing, 2021, 42(16): 6267-6286.
[6] WANG Y, LIANG B, DING M, et al. Dense semantic labeling with atrous spatial pyramid pooling and decoder for high-resolution remote sensing imagery[J]. Remote Sensing, 2018, 11(1): 20-40.
[7] 周力凯, 江雨洋, 冯亚春, 等. 基于多尺度区域与类不确定性理论的局部阈值分割方法[J]. 计算机应用, 2020, 40(2): 66-72. ZHOU Likai, JIANG Yuyang, FENG Yachun, et al. Local threshold segmentation method based on multi-scale region and class uncertainty theory[J]. Journal of Computer Applications, 2020, 40(2): 66-72.
[8] 曹春红, 段鸿轩, 曹玲, 等. 基于多级特征级联的遥感图像实时语义分割[J]. 山东大学学报(工学版), 2021, 52(2): 19-25. CAO Chunhong, DUAN Hongxuan, CAO Ling, et al. Real-time semantic segmentation of high-resolution remote sensing image based on multi-level feature cascade[J]. Journal of Shandong University(Engineering Science), 2021, 52(2): 19-25.
[9] PANBOONYUEN T, JITKAJORNWANICH K, LAWAWIROHWONG S, et al. Semantic segmentation on remotely sensed images using an enhanced global convolutional network with channel attention and domain specific transfer learning[J]. Remote Sensing, 2019, 11(1): 83-105.
[10] KONSTANTINOVA T, WIEGART L, RAKITIN M, et al. Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder-decoder models[J]. Scientific Reports, 2021, 11(1): 1-12.
[11] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[12] 张小娟, 汪西莉. 完全残差连接与多尺度特征融合遥感图像分割[J]. 遥感学报, 2020, 24(9): 1120-1133. ZHANG Xiaojuan, WANG Xili. Image segmentation models of remote sensing using full residual connection and multiscale feature fusion[J]. Journal of Remote Sensing, 2020, 24(9): 1120-1133.
[13] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C] //Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018: 801-818.
[14] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[15] DU S J, DU S H, LIU B, et al. Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images[J]. International Journal of Digital Earth, 2021, 14(3): 357-378.
[16] FENG Y C, DIAO W H, SUN X, et al. NPALoss: neighboring pixel affinity loss for semantic segmentation in high-resolution aerial imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 20(2): 475-482.
[17] TANG M, DJELOUAH A, PERAZZI F, et al. Normalized cut loss for weakly-supervised CNN segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 1818-1827.
[18] ZHU L Y, JI D Y, ZHU S P, et al. Learning statistical texture for semantic segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 12537-12546.
[19] TABRIZI P R, MANSOOR A, CERROLAZA J J, et al. Automatic kidney segmentation in 3D pediatric ultrasound images using deep neural networks and weighted fuzzy active shape model[C] // Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging IEEE. Piscataway, USA: IEEE, 2018: 1170-1173.
[20] HASAN P. Multi-task semantic segmentation of CT images for COVID-19 infections using DeepLabV3+ based on dilated residual network[J]. Physical and Engineering Sciences in Medicine, 2022, 12(4): 1-13.
[21] WANG Q, ZHANG X, CHEN G, et al. Change detection based on faster R-CNN for high-resolution remote sensing images[J]. Remote Sensing Letters, 2018, 9(10): 923-932.
[22] DENG G H, WU Z C, WANG C J, et al. CCANet: class-constraint coarse-to-fine attentional deep network for subdecimeter aerial image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 2(99): 1-20.
[23] LI R, ZHENG S, DUAN C. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 40(19): 1-5.
[24] SU Y, CHENG J, BAI H W, et al. Semantic segmentation of very-high-resolution remote sensing images via deep multi-feature learning[J]. Remote Sensing, 2022, 14(3): 533-558.
[25] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[J]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, 17(12): 234-241.
[26] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder arch-itecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12): 2481-2495.
[27] ZHENG X, HUAN L, XIA G S, et al. Parsing very high resolution urban scene images by learning deep ConvNets with edge aware loss[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170(1): 15-28.
[28] LI R, ZHENG S, DUAN C, et al. Multiattention network for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(1): 1-3.
[29] ROTTENSTEINER F, SOHN G, JUNG J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. Remote Sensing and Spatial Information Sciences, 2012, 2(5): 293-298.
[1] 迟云浩,杨璐,郭杰,郝凡昌,聂秀山. 基于注意力特征融合网络的手指静脉图像质量评价方法[J]. 山东大学学报 (工学版), 2023, 53(6): 56-62.
[2] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[3] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[4] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
[5] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[6] 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106.
[7] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[8] 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36.
[9] 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97.
[10] 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34.
[11] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[12] 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117.
[13] 蔡国永, 林强, 任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7.
[14] 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79.
[15] 权稳稳,林明星. CNN特征与BOF相融合的水下目标识别算法[J]. 山东大学学报 (工学版), 2019, 49(1): 107-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!