山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 114-125.doi: 10.6040/j.issn.1672-3961.0.2023.305
蒋明镜1,2,3,4,王思远4,姜朋明1,华亦雄5,石安宁4,杨越群1,薛桥斌1,戴婉婷5,仇淞5
JIANG Mingjing1,2,3,4, WANG Siyuan4, JIANG Pengming1, HUA Yixiong5, SHI Anning4, YANG Yuequn1, XUE Qiaobin1, DAI Wanting5, QIU Song5
摘要: 基于对月球资源和环境条件的调研及国内外月球基地建设方案的相关研究与发展现状,综合考虑月球纬度、复杂地形地貌以及月壤/月岩矿物等原位资源利用因素,以传统土木工程为框架,结合当下物联网、大数据、人工智能等研究方法,提出以月表、月海、月岩等地貌特征与不同阶段下月球开发探索的研究目标相结合,分阶段构建“月表之上”“月海之中”“月岩之下”的月球综合体建造基地的设想。对不同阶段的基地建设选址、设计方案、结构特征以及智慧基地的建设要点进行分析,总结面对复杂月面地貌特征条件下构建月球基地综合体所面临的技术挑战和关键科学问题,为未来建设高级月球基地及功能分区部署提供参考。
中图分类号:
[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1): 5-17. WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17. [2] 张颖一,张伟,王功. 太空增材制造的技术需求和应用模式探索[J].中国材料进展, 2017,36: 503-511. ZHANG Yingyi, ZHANG Wei, WANG Gong. Discussion on the technical demands and application modes of additive manufacturing in space[J]. Materials China, 2017, 36: 503-511. [3] 田小勇,李尘,卢秉恒. 空间3D打印技术现状与前景[J].载人航天, 2016, 4: 471-476. TIAN Xiaoyong, LI Chen, LU Bingheng. Status and prospect of 3D printing technology in space[J]. Manned Spaceflight, 2016, 4: 471-476. [4] 梁静静,杨彦红,金涛,等. 金属材料空间3D打印技术研究现状[J]. 载人航天, 2017, 23: 663-669. LIANG Jingjing, YANG Yanhong, JIN Tao, et al. Research status of 3D printing technology for metals in space[J]. Manned Spaceflight, 2017, 23: 663-669. [5] 王功,刘亦飞,程天锦,等. 空间增材制造技术的应用[J].空间科学学报, 2016, 36: 571-576. WANG Gong, LIU Yifei, CHENG Tianjin, et al. Application of additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2016, 36: 571-576. [6] 黄秋实,李良琦,高彬彬. 国外金属零部件增材制造技术发展概述[J].国防制造技术, 2012, 10: 26-29. HUANG Qiushi, LI Liangqi, GAO Binbin. Overview of the development of additive manufacturing technology for foreign metal parts[J]. Defense Manufacturing Tech-nology, 2012, 10: 26-29. [7] 孙红俊,蒋宇平. NASA在国际空间站试验零重力环境下的3D打印技术[J].军民两用技术与产品, 2013,11: 58-60. SUN Hongjun, JIANG Yuping. NASA 3D printing technology in the zero gravity environment of the International Space Station experiment[J]. Dual Use Technologies & Products, 2013, 11: 58-60. [8] YE Peijian, XIAO Fugen. Issues about lunar environment in lunar exploration project[J]. Spacecraft Environment Engineering, 2006, 23(1): 1-11. [9] MOROTA T, HARUYAMA J, HONDA C, et al. Mare volcanism in the lunar farside moscoviense region: implication for lateral variation in magma production of the moon[J]. Geophysical Research Letters, 2009, 36(21): 1-5. [10] JOLLY S D, HAPPEL J, STURE S. Design and construction of shielded lunar outpost[J]. Journal of Aerospace Engineering, 1994, 7(4): 417-434. [11] KONDYURINA I, KONDYURIN A, LAUKE B, et al. Polymerisation of composite materials in space environment for development of a moon base[J]. Advances in Space Research, 2006, 37(1): 109-115. [12] 邓佳音,程维明,刘樯漪,等.月表地貌起伏形态分异特征及分级标准研究[J].地理学报,2022,77(7): 1794-1807. DENG Jiayin, CHENG Weiming, LIU Qiangyi, et al. Morphological differentiation characteristics and classification criteria of lunar surface relief amplitude[J]. Acta Geographica Sinica, 2022, 77(7): 1794-1807. [13] ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission[J]. Science China Physics, Mechanics & Astronomy, 2022, 65: 1-8. [14] GRANT H, HEIKEN D, BEVAN M. Lunar sourcebook: a user's guide to the moon[M]. London: the Press Syndicate of the University of Cambridge, 1991. [15] FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 45-46. [16] KEIHM S J, PETERS K, LANGSETH M G, et al. Apollo 15 measurement of lunar surface brightness temperatures thermal conductivity of the upper 1% meters of regolith [J]. Earth and Planetary Science Letters, 1973, 19(3): 337-351. [17] HEMINGWAY B S, ROBIE R A, WILSON W H. Specific heats of lunar soils, basalt, and breccias from the Apollo 14, 15, and 16 landing sites, between 90 and 350 K [C] // Proceedings of the Fourth Lunar Science Conference. Houston, USA: Geochimica et Cosmochimica Acta, 1973: 2481-2487. [18] LOGAN L M, HUNT G R, BALSAMO S R, et al. Midinfrared emission spectra of Apollo 14 and 15 soils and remote compositional mapping of the moon[C] // Proceedings of the Third Lunar Science Conference. Houston, USA: Geochimica et Cosmochimica Acta. 1972: 3069-3076. [19] FELDMAN W C, MAURICE S, BINDER A B, et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles[J]. Science, 1998, 281(5382): 1496-1500. [20] SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016-2029. [21] STARUKHINA L V, SHKURATOV Y G. The lunar poles: water ice or chemically trapped hydrogen[J]. Icarus, 2000, 147(2): 585-587. [22] LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8907-8912. [23] RODIONOVA Z F, ZHARKOVA A Y, GRISHAKINA E A, et al. Topographic features of the lunar maria and basins[J]. Solar System Research, 2021, 55: 183-199. [24] HEAD III J W. Lunar volcanism in space and time[J]. Reviews of Geophysics, 1976, 14(2): 265-300. [25] 欧阳自远. 国际月球科研站[R].北京: 格致论道讲坛,2021. [26] 凌宗成,刘建忠,张江,等. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图: 以月球雨海-冷海地区(LQ-4)为例[J].地学前缘,2014,21(6): 107-120. LING Zongcheng, LIU Jianzhong, ZHANG Jiang, et al. The lunar rock types as determined by Chang'E-1 IIM data: a case study of Mare Imbrium-Mare Frigoris Region(LQ-4)[J]. Earth Science Frontiers, 2014, 21(6): 107-120. [27] 霍倩,刘姝瑞,谭艳君,等. 连续玄武岩纤维改性方法的研究进展[J].纺织科学与工程学报, 2021,38(1): 73-78. HUO Qian, LIU Shurui, TAN Yanjun, et al. Research progress on modification methods of continuous basalt fiber[J]. Journal of Textile Science and Engineering, 2021, 38(1): 73-78. [28] 蒋明镜,张鑫蕊,司马军,等. 壤基材料加筋月壤技术在月球基地建设中的应用[J]. 苏州科技大学学报(自然科学版), 2023, 40(3): 11-20. JIANG Mingjing, ZHANG Xinrui, SIMA Jun, et al. Future application of lunar-textile composite /reinforced regolith to the construction of lunar bases[J]. Journal of Suzhou University of Science and Technology(Natural Science Edition), 2023, 40(3): 11-20. [29] 肖龙,黄俊,赵佳伟,等.月面熔岩管洞穴探测的意义与初步设想[J].中国科学:物理学 力学 天文学,2018,48(11):87-100. XIAO Long, HUANG Jun, ZHAO Jiawei, et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2018, 48(11):87-100. [30] WAGNER R V, ROBINSON M S. Distribution, formation mechanisms, and significance of lunar pits[J]. Lcarus, 2014, 237: 52-60. [31] BENAROYA H. Lunar habitats: a brief overview of issues and concepts[J]. Reach, 2018, 7: 14-33. [32] CHAPPAZ L, SOOD R, MELOSH H, et al. Buried empty lava tube detection with GRAIL data[C] //Astro Dynamics Specialist Conference. San Diego, USA, AIAA Press, 2014: 4-7. [33] 梅洪元,包为民,于登云,等. 关于未来月球基地建筑方案的构想[J]. 深空探测学报(中英文), 2022, 9(6): 553-559. MEI Hongyuan, BAO Weimin, YU Dengyun, et al. Research on building plans design for future China lunar base[J]. Journal of Deep Space Exploration, 2022, 9(6): 553-559. [34] 朱恩涌,果琳丽,陈冲. 有人月球基地构建方案设想[J]. 航天返回与遥感, 2020, 34(5): 1-6. ZHU Enyong, GUO Linli, CHEN Chong. Research on manned lunar base construction scheme[J]. Spacecraft Recovery & Remote Sensing, 2020, 34(5): 1-6. [35] 李志杰,果琳丽,梁鲁,等. 有人月球基地构型及构建过程的设想[J]. 航天器工程, 2015, 24(5): 23-30. LI Zhijie, GUO Linli, LIANG Lu, et al. Configuration and construction process of manned lunar base[J]. Spacecraft Engineering, 2015, 24(5): 23-30. [36] GRANDL W. Lunar base 2015 stage 1 preliminary design study [J]. Acta Astronautica, 2007, 60(4/5/6/7): 554-560. [37] BENAROYA H, BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica, 2008, 62(4/5): 277-299. [38] ZHOU C, CHEN R, XU J, et al. In-situ construction method for lunar habitation: Chinese Super Mason[J].Automation in Construction, 2019, 104: 66-79. [39] 宋靖华,张杨姝禾,袁焕鑫. 利用熔岩管道建设月球基地的规划设想[J]. 城市建筑, 2019, 16(7): 44-51. SONG Jinghua, ZHANG-YANG Shuhe, YUAN Huanxin. A tentative plan of lunar base under lava tubes[J]. Urbanism and Architecture, 2019, 16(7): 44-51. [40] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J].深空探测学报(中英文),2018,5(4): 374-381. YUAN Yong, ZHAO Chen, HU Zhenyu. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration, 2018, 5(4): 374-381. [41] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. [42] 冯鹏, 包查润, 张道博, 等. 基于月面原位资源的月球基地建造技术[J]. 工业建筑, 2021, 51(1): 169. FENG Peng, BAO Charun, ZHANG Daobo, et al. Construction technology for lunar bases using lunar in-situ resources[J]. Industrial Construction, 2021, 51(1): 169. [43] ULUBEYLI S. Lunar shelter construction issues: the state-of-the-art towards 3D printing technologies[J]. Acta Astronautica, 2022, 195: 318-343. [44] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J].地球科学进展, 2004, 19(3): 351-358. OUYANG Ziyuan. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351-358. [45] KHOSHNEVIS B, BODIFORD M P, BURKS K H, et al. Lunar contour crafting a novel technique for ISRU-based habitat development[C] //43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers. Nevada, USA: AIAA Press, 2005: 7397-7409. [46] SMITHERS G A, NEHLS M K, HOVATER M A, et al. A one piece lunar regolith bag garage prototype[R]. Huntsville, USA: Marshall Space Flight Center, 2007. [47] AKISHEVA Y, GOURINAT Y. Utilisation of moon regolith for radiation protection and thermal insulation in permanent lunar habitats[J]. Applied Sciences, 2021, 11(9): 3853. [48] NAITO M, HASEBE N, SHIKISHIMA M, et al. Radiation dose and its protection in the moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube[J]. Journal of Radiological Protection, 2020, 40(4): 947. [49] 谢和平, 张国庆, 李存宝. 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, 52(1): 1-8. XIE Heping, ZHANG Guoqing, LI Cunbao. Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, 52(1): 1-8. [50] ALLENDER E J, ORGEL C, ALMEIDA N V, et al. Traverses for the ISECG-GER design reference mission for humans on the lunar surface[J]. Advances in Space Research, 2019, 63(1): 692-727. [51] UY SALOMA E E S, BOONYATEE T. Image processing for geotechnical laboratory measurements[J]. Geomate Journal, 2016, 10(22): 1964-1970. [52] DAI Y Y, ZHANG K, MAHARJAN S, et al. Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12175-12186. [53] ONSEL E, CHANG O, MYSIOREK J, et al. Applications of mixed and virtual reality techniques in site characterization[C] //26th Vancouver Geotechnical Society Symp. Vancouver, Canada: AGU Press, 2019: 1-9. [54] COOMBS C R, HAWKE B R. A search for intact lava tubes on the moon: possible lunar base habitats[C] // The Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, USA: NASA Press, 1992(1): 219-229. [55] HARUYAMA J, SAWAI S, MIZUNO T, et al. Exploration of lunar holes, possible skylights of underlying lava tubes, by smart lander for investigating moon(slim)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): 7-10. [56] 龚自正, 李明, 陈川, 等. 小行星监测预警、安全防御和资源利用的前沿科学问题及关键技术[J]. 科学通报, 2020, 65(5): 346-372. GONG Zizheng, LI Ming, CHEN Chuan, et al. The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization[J]. Chinese Science Bulletin, 2020, 65(5): 346-372. [57] MAZZANTI P. Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes[J]. Geotechnical News, 2011, 29(2): 25. [58] 江月新, 黄云龙, 余建军. 基于 WiFi 通信的矿井监测无线传感器网络研究[J]. 煤炭技术, 2017, 36(6): 278-280. JIANG Yuexin, HUANG Yunlong, YU Jianjun. Research on mine monitoring wireless sensor network based on WiFi communication[J]. Coal Technology, 2017, 36(6): 278-280. [59] 李真, 闫广亮, 宋建村, 等. 思山岭铁矿超深超大规模开采工艺与思考[J].矿业研究与开发,2023,43(8): 1-6. LI Zhen, YAN Guangliang, SONG Jiancun, et al. Study and consideration on mining method of ultra deep and ultra large-scale in sishanling iron mine[J]. Mining Research and Development, 2023, 43(8): 1-6. [60] 陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. |
No related articles found! |
|