山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 52-62.doi: 10.6040/j.issn.1672-3961.0.2023.149
• 机器学习与数据挖掘 • 上一篇
赵晓焱1,2,高源志1,张佳乐1,张俊娜1,2*,袁培燕1
ZHAO Xiaoyan1,2, GAO Yuanzhi1, ZHANG Jiale1, ZHANG Junna1,2*, YUAN Peiyan1
摘要: 以最小化卸载成本为目标,提出一种结合轨迹预测的任务卸载策略,将任务卸载转化为服务器节点选择问题。构建一种基于时间序列的车辆移动轨迹预测模型,将其表述为一个非线性回归任务;依据车辆位置信息与通信范围,提出一种基于最短通信距离的动态协作簇建立方法,利用服务器计算能力和传输成本均衡边缘网络负载,减少车辆移动形成的系统开销;利用马尔可夫决策过程,结合移动轨迹预测和动态边缘服务器簇设计任务卸载策略,解决多边缘服务器覆盖场景下的服务器选择问题。试验结果表明,所提算法与其他算法相比,任务卸载成本在简单与复杂移动轨迹下至少降低了80%和57.8%,有效减少多边缘服务器协作时的轨迹预测误差和成本开销。
中图分类号:
[1] KONG X, WANG K, HOU M, et al. A federated learning-based license plate recognition scheme for 5G-enabled Internet of Vehicles[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8523-8530. [2] RAZA S, WANG S, AHMED M, et al. A survey on vehicular edge computing: architecture, applications, technical issues, and future directions[J]. Wireless Communications and Mobile Computing, 2019, 2019: 1-19. [3] LIU L, CHEN C, PEI Q, et al. Vehicular edge computing and networking: a survey[J]. Mobile Networks and Applications, 2020, 26(3): 1145-1168. [4] DAI P, HU K, WU X, et al. A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 899-911. [5] LI M, GAO J, ZHANG N, et al. Collaborative computing in vehicular networks: a deep reinforcement learning approach[C] // Proceedings of the ICC 2020-2020 IEEE International Conference on Communications(ICC). Dublin, Ireland: IEEE, 2020: 1-6. [6] DAI M, LIU Z, GUO S, et al. A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2684-2690. [7] RAZA S, LIU W, AHMED M, et al. An efficient task offloading scheme in vehicular edge computing[J]. Journal of Cloud Computing, 2020, 9(1): 1-14. [8] GU X, ZHANG G, CAO Y. Cooperative mobile edge computing-cloud computing in internet of vehicle: architecture and energy-efficient workload allocation[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(8): e4095. [9] ZENG F, TANG J, LIU C, et al. Task-offloading strategy based on performance prediction in vehicular edge computing[J]. Mathematics, 2022, 10(7): 1010. [10] ZHAN W, LUO C, WANG J, et al. Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing[J]. IEEE Internet of Things Journal, 2020, 7(6): 5449-5465. [11] WU H, CHEN Z, SUN W, et al. Modeling trajectories with recurrent neural networks[C] // Proceedings of the 26th International Joint Conference on Artificial Intelligence(IJCAI'17). Melbourne, Australia: IJCAI, 2017:3083-3090. [12] WANG L, CHEN Z, WU J. Vehicle trajectory prediction algorithm in vehicular network[J]. Wireless Networks, 2019, 25(4): 2143-2156. [13] GAO H, QIN Y, HU C, et al. An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(9):6468-6479. [14] WANG L, GUI J, DENG X, et al. Routing algorithm based on vehicle position analysis for internet of vehicles[J]. IEEE Internet of Things Journal, 2020, 7(12): 11701-11712. [15] LIN K, LI C, LI Y, et al. Distributed learning for vehicle routing decision in software defined Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6): 3730-3741. [16] OJIMA T, FUJII T. Resource management for mobile edge computing using user mobility prediction[C] // Proceedings of 2018 International Conference on Information Networking(ICOIN). Chiang Mai, Thailand: IEEE, 2018: 718-720. [17] CAO S, ZHANG Y, DING P, et al. Research on edge resource allocation method based on vehicle trajectories prediction[C] // Proceedings of 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering(AUTEEE). Shenyang, China: IEEE, 2021: 200-206. [18] ZHANG C, ZHANG H, QIAO J, et al. Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1389-1401. [19] LÜ B, YANG C, CHEN X, et al. Task offloading and serving handover of vehicular edge computing networks based on trajectory prediction[J]. IEEE Access, 2021, 9(9): 130793-130804. [20] PACHECO L, OLIVEIRA H, ROSARIO D, et al. Service migration for connected autonomous vehicles[C] //Proceedings of 2020 IEEE Symposium on Computers and Communications(ISCC). Rennes, France: IEEE, 2020: 1-6. |
[1] | 徐晓斌,王琪,高彬,孙志于,梁中军,王尚广. 异构网络中基于轨迹预测的资源预分配方案[J]. 山东大学学报 (工学版), 2022, 52(4): 12-19. |
[2] | 钱程,赵淦森,罗浩宇. MEC中面向动态环境的工作流D2D协同卸载方法[J]. 山东大学学报 (工学版), 2022, 52(4): 45-53. |
[3] | 黄其萌,刘兆伟,杜贞斌. 基于惩罚机制的Gossip认证算法在车联网中的应用[J]. 山东大学学报 (工学版), 2021, 51(2): 74-82. |
|