您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 48-56.doi: 10.6040/j.issn.1672-3961.0.2022.121

• 机器学习与数据挖掘 • 上一篇    

基于ODCG的网约车需求预测模型

那绪博,张莹*,李沐阳,陈元畅,华云鹏   

  1. 华北电力大学控制与计算机工程学院, 北京 102206
  • 发布日期:2023-10-19
  • 作者简介:那绪博(1994— ),男,辽宁沈阳人,硕士研究生,主要研究方向为人工智能和智能交通. E-mail:1835477831@qq.com. *通信作者简介:张莹(1982— ),女,宁夏银川人,教授,博士生导师,博士,主要研究方向为人工智能和智能交通. E-mail: dearzppzpp@163.com
  • 基金资助:
    国家自然科学基金资助项目(52078212)

An online car-hailing demand forecasting model based on ODCG

NA Xubo, ZHANG Ying*, LI Muyang, CHEN Yuanchang, HUA Yunpeng   

  1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Published:2023-10-19

摘要: 为提高网约车需求预测的准确率,提出结合卷积神经网络(convolutional neural network, CNN)和卷积门控循环单元(convolutional gate recurrent unit, ConvGRU)的出发地-目的地需求预测分析(origin-destination demand prediction with CNN and ConvGRU, ODCG)模型。ODCG模型的网络结构分为局部空间特征(local spatial feature, LSF)提取模块、时间演化特征(time evolution feature, TEF)提取模块、全局关联模块(global association module, GCM)和输出层。LSF提取模块利用CNN分别处理出发地视图和目的地视图,得到网约车需求的局部空间依赖性;TEF提取模块将网约车需求的局部空间信息、天气信息和订单序列关联度信息整合到ConvGRU中,分析网约车的需求;GCM模块整合所有区域之间的相关性,通过将所有区域特征加权求和得到全局相关性,并将相应区域之间的相似度定义为权重。试验结果表明,ODCG模型在网约车需求预测中优于其他基线模型,同时提高了网约车需求预测的准确率。

关键词: ConvGRU, 网约车需求预测, 时空特征提取, 时空预测模型, 卷积神经网络

中图分类号: 

  • TP391
[1] TOQUÉ F, CÔME E, El MAHRSI M K, et al. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks[C] //2016 IEEE 19th International Conference on Intelligent Transportation Systems. New Jersey, USA: IEEE, 2016: 1071-1076.
[2] YANG Chao, YAN Fenfan, XU Xiangdong. Daily metro origin-destination pattern recognition using dimensionality reduction and clustering methods[C] //IEEE International Conference on Intelligent Transportation Systems-ITSC. New Jersey, USA: IEEE, 2017:548-553.
[3] TONG Yongxin, CHEN Yuqiang, ZHOU Zimu, et al. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms[C] //KDD'17 Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2017: 1653-1662.
[4] YAO Huaxiu, WU Fei, KE Jintao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C] //32nd AAAI Conference on Artificial Intelligence. Louisiana, USA: AAAI, 2018: 2588-2595.
[5] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402.
[6] QIAN X W, UKKUSURI S V, YANG C, et al. Forecasting short-term taxi demand using boosting-GCRF[C] //ACM SIGKDD International Workshop on Urban Computing. New York, USA: ACM, 2017: 256-264.
[7] KE Jintao, ZHENG Hongyu, YANG Hai, et al. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 122(4): 591-608.
[8] CHANG Y, ZHAI C X, LIU Y, et al. Predicting multi-step citywide passenger demands using attention-based neural networks[C] //WSDM’18: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2018: 736-744.
[9] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C] //Advances in Neural Information Processing Systems. Cambridgeshire, UK: MIT Press, 2015: 802-810.
[10] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C] // International Joint Conference on Artificial Intelligence. California, USA: Morgan Kaufmann, 2018: 3634-3640.
[11] SHA Anshu, WANG Bin, WU Xiaofeng. Semi-supervised classification for hyperspectral images using edge-conditioned graph convolutional networks[C] //IEEE International Geoscience and Remote Sensing Symposium.New Jersey, USA: IEEE, 2019: 2690-2693.
[12] KIM D, DINH H, MACKUNIS W, et al. A recurrent neural network(RNN)-based attitude control method for a VSCMG-actuated satellite[C] //Proceedings of the American Control Conference. California, USA: IEEE Computer SOC, 2012: 944-949.
[13] BAI L, YAO L, SALIL S K, et al. STG2Seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C] //International Joint Conference on Artificial Intelligence. California, USA: Morgan Kaufmann, 2019: 1981-1987.
[14] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[C] //IEEE Transactions on Intelligent Transportation Systems. New Jersey, USA: IEEE, 2020: 3848-3858.
[15] WU Z Z, KING S. Investigating gated recurrent networks for speech synthesis[C] //International Conference on Acoustics Speech and Signal Processing ICASSP. New Jersey, USA: IEEE, 2016: 5140-5144.
[16] GUO Shengnan, LIN Youfang, LI Shijie, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
[17] WANG M H, STEVEN D S, NATE V B, et al. Estimating dynamic origin-destination data and travel demand using cell phone network data[J]. International Journal of Intelligent Transportation Systems Research, 2013, 11(2): 76-86.
[18] KE Jintao, QIN Xiaoran, YANG Hai, et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 122(1): 1879-1889.
[19] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 8(9): 1735-1780.
[20] ZHOU X S, MAHMASSANI H S. Dynamic origin-destination demand estimation using automatic vehicle identification data[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 105-114.
[21] WANG Yuandong, YIN Hongzhi, CHEN Hongxu, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling[C] //KDD'19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2019: 1227-1235.
[22] YAO Huaxiu, TANG Xianfeng, WEI Hua, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C] //Thirty-third AAAI Conference on Artificial Intelligence. California, USA: Assoc Advancement Artificial Intelligence, 2019: 5668-5675.
[23] LIU Lingbo, QIU Zhilin, LI Guanbin, et al. Contextualized spatial-temporal network for taxi origin-destination demand prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3875-3887.
[24] ZHANG Lingyu, HU Tao, MIN Yue, et al. A taxi order dispatch model based on combinatorial optimization[C] //KDD'17 Proceedings the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2017: 2151-2159.
[25] YANG Hai, LAU Yanwin, WONG Sze, et al. A macroscopic taxi model for passenger demand, taxi utilization and level of services[J]. Transportation, 2000, 6(3): 317-340.
[26] TAHERI J, ZOMAYA A Y. Artificial neural networks[M]. New York: John Wiley & Sons, Ltd., 2005: 147-185.
[27] NASCIMENTO R S, FROES ROBERTA E S, SILVA N. Comparison between ordinary least squares regression and weighted least squares regression in the calibration of metals present in human milk determined by ICP-OES[J]. Talanta, 2010, 80(3): 1102-1109.
[28] TIBSHIRANI R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society Series B-Statistical Methodological, 2011, 73(1):273-282.
[29] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C] // KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 785-794.
[30] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C] //Advances in Neural Information Processing Systems. California,USA: Neural Information Processing Systems, 2015: 802-810.
[1] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[2] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
[3] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[4] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[5] 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106.
[6] 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36.
[7] 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97.
[8] 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34.
[9] 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117.
[10] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[11] 蔡国永, 林强, 任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7.
[12] 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79.
[13] 权稳稳,林明星. CNN特征与BOF相融合的水下目标识别算法[J]. 山东大学学报 (工学版), 2019, 49(1): 107-113.
[14] 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84.
[15] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!