山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 104-112.doi: 10.6040/j.issn.1672-3961.0.2023.031
• 机器学习与数据挖掘 • 上一篇
于畅1,伍星1*,邓秋菊2
YU Chang1, WU Xing1*, DENG Qiuju2
摘要: 为有效实现工业生产线螺钉缺失问题的智能检测,利用深度学习技术,提出并设计一种螺钉检测算法。该算法包括3个部分:基于目标检测算法实现螺钉自动检测;基于关键点检测的螺钉匹配算法消除零件位置变化影响;构建多视角检测结果融合算法降低零件相互遮挡影响。该算法已应用于多种型号的洗衣机内桶螺钉检测中,试验结果表明其正确率高达99.7%以上。与传统的人工检测方式相比,该算法具有更高的准确率和自动化程度,可以有效减少漏检和误检问题,为工业生产提供新的解决方案。
中图分类号:
[1] 王丽佳. 变速箱螺钉漏装检测系统开发[D]. 唐山:华北理工大学, 2018. WANG Lijia. Transmission screw packing test system development[D]. Tangshan: North China University of Science and Technology, 2018. [2] 董元发, 袁庆松, 查靓, 等. 钢琴面板螺钉错漏智能视觉检测方法研究[J]. 机械设计与制造, 2019(4): 73-77. DONG Yuanfa, YUAN Qingsong, ZHA Jing, et al. Intelligent visual detection method for screw errors and omissions in assembly of piano panel[J]. Machinery Design and Manufacture, 2019(4): 73-77. [3] 钱磊, 沈峘, 沈一群, 等. 一种汽车照明大灯的安装螺钉缺失检测装置:CN206058303U[P]. 2017-03-29. [4] 刘志昌, 魏泽, 寸毛毛, 等. 一种螺钉缺失检测方法,装置及存储介质:CN201910551548.8[P]. 2019-11-15. [5] ZHAO Z, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. [6] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9627-9636. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C] //Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich, Germany: Springer International Publishing, 2015: 234-241. [8] YANG Q, SHI L, HAN J, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensedimages[J]. Field Crops Research, 2019, 235: 142-153. [9] 朱安康,王娆芬,张振宇. 基于深度学习的铝材表面缺陷检测系统设计[J]. 传感器与微系统, 2022, 41(8):96-99. ZHU Ankang, WANG Raofen, ZHANG Zhenyu. Design of aluminum surface defect detection system based on deep learning[J]. Transducer and Microsystem Technologies, 2022, 41(8): 96-99. [10] YUAN Z, ZHANG Z, SU H, et al. Vision-based defect detection for mobile phone cover glass using deep neural networks[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19: 801-810. [11] 吴伟浩,李青. 基于改进Yolo v3的电连接器缺陷检测[J]. 传感技术学报, 2020, 33(2): 299-307. WU Weihao, LI Qing. Defect detection of electrical connector based on improved Yolo v3[J]. Chinese Journal of Sensors and Actuators, 2020, 33(2): 299-307. [12] 王淑青,张鹏飞,要若天,等. 基于改进YOLOv5的太阳能电池片表面缺陷检测[J]. 仪表技术与传感器, 2022(5): 111-116. WANG Shuqing, ZHANG Pengfei, YAO Ruotian, et al. Surface defect detection of solar cell based on improved YOLOv5[J]. Instrument Technique and Sensor, 2022(5): 111-116. [13] KUANG H, DING Y, LI R, et al. Defect detection of bamboo strips based on LBP and GLCM features by using SVM classifier[C] //2018 Chinese Control and Decision Conference(CCDC). Shenyang, China: IEEE, 2018: 3341-3345. [14] LI X, ZHU J, SHI H, et al. Surface defect detection of seals based on K-means clustering algorithm and particle swarm optimization[J]. Scientific Programming, 2021, 2021: 3965247. [15] 李军华,权小霞,汪宇玲. 多特征融合的瓷砖表面缺陷检测算法研究[J]. 计算机工程与应用, 2020, 56(15): 191-198. LI Junhua, QUAN Xiaoxia, WANG Yuling. Research on defect detection algorithm of ceramic tile surface with multi-feature fusion[J]. Computer Engineering and Applications, 2020, 56(15): 191-198. [16] LIN T, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2117-2125. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[1] | 周晓昕,廖祝华,刘毅志,赵肄江,方艺洁. 融合历史与当前交通流量的信号控制方法[J]. 山东大学学报 (工学版), 2023, 53(4): 48-55. |
[2] | 宋佳芮,陈艳平,王凯,黄瑞章,秦永彬. 基于Affix-Attention的命名实体识别语义补充方法[J]. 山东大学学报 (工学版), 2023, 53(2): 70-76. |
[3] | 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69. |
[4] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[5] | 刘丁菠,刘学艳,于东然,杨博,李伟. 面向小样本目标检测任务的自适应特征重构算法[J]. 山东大学学报 (工学版), 2022, 52(6): 115-122. |
[6] | 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114. |
[7] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[8] | 韩天雨,路长厚,李建美,尹昂,侯秋林. 利用图像处理技术测量丝杠螺距的机器视觉系统[J]. 山东大学学报 (工学版), 2022, 52(3): 80-85. |
[9] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[10] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
[11] | 蒋桐雨,陈帆,和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8, 18. |
[12] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
[13] | 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83. |
[14] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[15] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
|