山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (6): 89-95.doi: 10.6040/j.issn.1672-3961.0.2021.354
• 土木工程 • 上一篇
扈萍1,2,滕越1,2*,马少坤3,4,刘莹3,4,张西文1,2,陈玉兰5
HU Ping1,2,TENG Yue1,2*, MA Shaokun3,4, LIU Ying3,4, ZHANG Xiwen1,2, CHEN Yulan5
摘要: 对粉细砂进行一系列空心圆柱扭剪试验,研究土体在经历含主应力轴偏转的非比例加载路径时的变形特性,重点分析偏应力水平、中主应力系数对土体变形产生的影响。试验中发现弹性剪应变在总剪应变中所占比例较大。在此基础上重新定义了非共轴角,并对饱和粉细砂的变形特性及其影响因素进行研究。结果表明,纯主应力旋转过程中,不同偏应力比、中主应力系数的土体,广义剪应变的整体发展规律相似,偏应力比与中主应力系数对加载末期的土体应变硬化产生较大影响;偏应力比与广义剪应力相同时,中主应力系数的差异使得土体的各向异性在变形响应中得以体现,从而表现出广义剪应变的差异;主应力旋转将使粉细砂产生明显的塑性变形,相较于中主应力系数,偏应力比对于砂土非共轴变形特性的影响更大。
中图分类号:
[1] QIAN Jiangu, DU Zibo, LU Xilin,et al. Effects of principal stress rotation on stress-strain behaviors of saturated clay under traffic-load-induced stress path[J]. Soils and Foundations, 2019, 59(1):41-55. [2] 沈扬, 徐海东, 王保光, 等. 列车荷载引起心形应力路径下软土非共轴应变特征研究[J]. 岩土力学, 2017,38(1): 1-9. SHEN Yang, XU Haidong, WANG Baoguang, et al. Strain characteristics of non-coaxiality under heart- shaped stress path caused by train loads in soft clay[J]. Rock and Soil Mechanics, 2017, 38(1):1-9. [3] 童朝霞, 张建民, 张嘎. 应力主轴旋转对波浪作用下堤防变形的影响分析[J]. 工程力学, 2009,26(10): 67-73. TONG Zhaoxia, ZHANG Jianmin, ZHANG Ga. Effects of principal-stress-axis rotation on the deformation of a dam under wave loading[J]. Engineering Mechanics, 2009, 26(10):67-73. [4] ZHOU Jian, YAN Jiajia, LIU Zhengyi, et al. Undrained anisotropy and non-coaxial behavior of clayey soil under principal stress rotation[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2014, 15(4):241-254. [5] 杜子博, 钱建固, 黄茂松. 考虑主应力轴旋转效应的交通荷载下饱和软黏土变形特性试验研究[J]. 岩石力学与工程学报, 2016,35(5): 1031-1040. DU Zibo, QIAN Jiangu, HUANG Maosong. Experimental study on deformation behavior of saturated soft clay under traffic loading considering effect of principal stress rotation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5):1031-1040. [6] 熊焕,郭林,蔡袁强. 主应力轴变化下非共轴对砂土剪胀特性影响[J]. 岩土力学, 2017,38(1): 133-140. XIONG Huan, GUO Lin, CAI Yuanqiang. Effect of non-coaxiality on dilatancy of sand involving principal stress axes rotation[J]. Rock and Soil Mechanics, 2017, 38(1):133-140. [7] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188. [8] 沈瑞福,王洪瑾,周景星. 动主应力轴连续旋转下砂土的动强度[J]. 水利学报, 1996, 27(1): 27-33. SHEN Ruifu, WANG Hongjin, ZHOU Jingxing. Dynamic strength of sand under cyclic rotation of principal stress directions[J]. Journal of Hydraulic Engineering, 1996, 27(1): 27-33. [9] 童朝霞,张建民,于艺林, 等. 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J]. 岩土工程学报, 2009,31(6): 946-952. TONG Zhaoxia, ZHANG Jianmin, YU Yilin, et al. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6):946-952. [10] 苏佳兴,蒋明镜,李立青, 等. 偏应力比及中主应力系数对应力主轴偏转条件下干砂变形特性的影响[J]. 岩土工程学报, 2011,33(增刊1): 455-460. SU Jiaxing, JIANG Mingjing, LI Liqing, et al. Effects of deviatoric stress ratio and intermediate stress parameter on deformation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl.1): 455-460. [11] GUTIERREZ M, ISHIHARA K. Non-coaxiality and energy dissipation in granular materials[J]. Soils and Foundations, 2000, 40(2): 49-59. [12] BLANC M, DI BENEDETTO H, TIOUAJNI S. Deformation characteristics of dry Hostun sand with principal stress axes rotation[J]. Soils and Foundations, 2011, 51(4): 749-760. [13] HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Geotechnique, 1983, 33(4): 355-383. [14] HARDIN B O, BLANDFORD G E. Elasticity of particulate materials[J]. Journal of Geotechnical Engineering, 1989, 115(6): 788-805. |
[1] | 杨俊, 杨志. 冻融循环条件下水泥稳定风化集料抗剪强度试验研究[J]. 山东大学学报(工学版), 2014, 44(5): 42-48. |
|