您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (5): 35-43.doi: 10.6040/j.issn.1672-3961.0.2022.094

• • 上一篇    

计及锅炉热动态影响的机组一次调频能力评估方法

李兆伟1,2,3,张恒旭4,曹永吉5*,李常刚4,高志民4,秦昊4   

  1. 1.华北电力大学电气与电子工程学院, 北京 102206;2.南瑞集团有限公司(国网电力科学研究院有限公司), 江苏 南京 211106;3.智能电网保护和运行控制国家重点实验室, 江苏 南京 211106;4.电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;5.丹麦科技大学电气工程系电力与能源中心, 丹麦 灵比 2800
  • 发布日期:2022-10-20
  • 作者简介:李兆伟(1985— ),男,江苏南京人,硕士,高级工程师,主要研究方向为电力系统安全稳定分析与控制. E-mail: lizhaowei1@sgepri.sgcc.com.cn. *通信作者简介:曹永吉(1992— ),男,山东青州人,博士后,主要研究方向为电力系统频率稳定分析与控制、可再生能源并网及储能技术应用. E-mail: caoyong@dtu.dk
  • 基金资助:
    国家自然科学基金资助项目(52177096);山东省自然科学基金资助项目(ZR2021QE133)

Assessment scheme for primary frequency regulation capability considering boiler thermal dynamic

LI Zhaowei1,2,3, ZHANG Hengxu4, CAO Yongji5*, LI Changgang4, GAO Zhimin4, QIN Hao4   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
    2. NARI Group Corporation(State Grid Electric Power Research Institute), Nanjing 211106, Jiangsu, China;
    3. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, Jiangsu, China;
    4. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    5. Center for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
  • Published:2022-10-20

摘要: 考虑锅炉在频率稳定分析中对机组的影响,提出计及热动态的机组一次调频能力评估方法。构建含锅炉热力学动态过程的扩展系统频率响应(extended system frequency response, ESFR)模型,推导扰动事故后频率动态响应在一次调频时间尺度下的时域表达式。构建综合频率偏移幅值和时间的评估框架,以量化表征一次调频能力。基于广域量测信息计算并校正ESFR模型参数,估计扰动事故后频率动态响应的特征量,实现对一次调频能力的量化。算例分析表明,本研究模型和方法能够减小频率动态响应分析和一次调频能力评估的误差。

关键词: 频率稳定, 系统频率响应模型, 量化评估, 一次调频

中图分类号: 

  • TM61
[1] 张恒旭,曹永吉,张怡,等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52.
[2] 仉怡超,闻达,王晓茹,等. 基于深度置信网络的电力系统扰动后频率曲线预测[J]. 中国电机工程学报, 2019, 39(17): 5095-5104. ZHANG Yichao, WEN Da, WANG Xiaoru, et al. A method of frequency curve prediction based on deep belief network of post-disturbance power system[J]. Proceeding of the CSEE, 2019, 39(17): 5095-5104.
[3] 曹永吉,张恒旭,张怡,等. 基于事件驱动的机组快速频率响应控制方法[J]. 电力系统自动化, 2021, 45(19): 148-154. CAO Yongji, ZHANG Hengxu, ZHANG Yi, et al. Event-driven fast frequency response control method for generator unit[J]. Automation of Electric Power Systems, 2021, 45(19): 148-154.
[4] 李世春,涂杰,舒征宇,等. 促进调峰的大规模风电调频备用容量动态配置策略[J]. 电力系统自动化, 2020, 44(24): 53-66. LI Shichun, TU Jie, SHU Zhengyu, et al. Dynamic configuration strategy for frequency regulation reserve capacity of large-scale wind power for promoting peak load regulation[J]. Automation of Electric Power Systems, 2020, 44(24): 53-66.
[5] BU Siqi, WEN Jiaxin, LI Fangxing. A Generic framework for analytical probabilistic assessment of frequency stability in modern power system operational planning[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3973-3976.
[6] 曹永吉,张恒旭,施啸寒,等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18): 1-8. CAO Yongji, ZHANG Hengxu, SHI Xiaohan, et al. Preliminary study on mechanism of large-scale distributed energy resource participating in security and stability control of large power grid[J]. Automation of Electric Power Systems, 2021, 45(18): 1-8.
[7] NGUYEN H T, YANG G, NIELSEN A H, et al. Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 997-1005.
[8] 张艳军,高凯,曲祖义. 基于发电机组出力曲线特征的一次调频性能评价方法[J]. 电力系统自动化, 2012, 36(7): 99-103. ZHANG Yanjun, GAO Kai, QU Zuyi. An evaluation method of primary frequency modulation performance based on characteristics of unit output power curves[J]. Automation of Electric Power Systems, 2012, 36(7): 99-103.
[9] ARRIGO F, BOMPARD E, MERLO M, et al. Assessment of primary frequency control through battery energy storage systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105428.
[10] ZHANG Hengxu, LI Changgang, LIU Yutian. Quantitative frequency security assessment method considering cumulative effect and its applications in frequency control[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 12-20.
[11] NAHID Al Masood, YAN Ruifeng, SAHA T K. A new tool to estimate maximum wind power penetration level: in perspective of frequency response adequacy[J]. Applied Energy, 2015, 154: 209-220.
[12] YU H Y, BANSAL R C, DONG Z Y. Fast computation of the maximum wind penetration based on frequency response in small isolated power systems[J]. Applied Energy, 2014, 113: 648-659.
[13] LI Hongyu, JU Ping, GAN Chun, et al. Analytic analysis for dynamic system frequency in power systems under uncertain variability[J]. IEEE Transactions on Power Systems, 2019, 34(2): 982-993.
[14] SHEKARI T, AMINIFAR F, SANAYE-PASAND M. An analytical adaptive load shedding scheme against severe combinational disturbances[J]. IEEE Transactions on Power Systems, 2016, 31(5): 4135-4143.
[15] 陶仁峰,李凤婷,李燕青,等. 基于系统频率响应特征的电网广义旋转备用优化配置[J]. 电力系统自动化, 2019, 43(9): 82-91. TAO Renfeng, LI Fengting, LI Yanqing, et al. Optimal configuration of generalized spinning reverse for power grid based on characteristics of system frequency response[J]. Automation of Electric Power Systems, 2019, 43(9): 82-91.
[16] 李兆伟,吴雪莲,庄侃沁,等. “9·19”锦苏直流双极闭锁事故华东电网频率特性分析及思考[J]. 电力系统自动化, 2017, 41(7): 149-155. LI Zhaowei, WU Xuelian, ZHUANG Kanqin, et al. Analysis and reflection on frequency characteristics of east China grid after bipolar locking of “9·19” Jinping-Sunan DC Transmission Line[J]. Automation of Electric Power Systems, 2017, 41(7): 149-155.
[17] FLYNN M E, O'MALLEY M J. A drum boiler model for long term power system dynamic simulation[J]. IEEE Transactions on Power Systems, 1999, 14(1): 209-217.
[18] 宋新立,王成山,刘涛,等. 电力系统全过程动态仿真中的机炉协调控制系统模型研究[J]. 中国电机工程学报, 2013, 33(25): 167-172. SONG Xinli, WANG Chengshan, LIU Tao, et al. Modeling of boiler-turbine coordinated control system in coal-fired power plants for power system unified dynamic simulation of transient, medium-term and long-term stabilities[J]. Proceeding of the CSEE, 2013, 33(25): 167-172.
[19] GAO Lin, DAI Yiping. A new linear model of fossil fired steam unit for power system dynamic analysis[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2390-2397.
[20] CAO Yongji, WU Qiuwei, ZHANG Hengxu, et al. Optimal sizing of hybrid energy storage system considering power smoothing and transient frequency regulation[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108227.
[21] 曹永吉,张恒旭,谢宇峥,等. 暂态低频高压驱动的直流馈入电网减负荷紧急轮配置方案[J]. 电力系统自动化, 2019, 43(6): 156-164. CAO Yongji, ZHANG Hengxu, XIE Yuzheng, et al. Configuration scheme of emergency load shedding for HVDC receiving-end power grid based on transient low-frequency and high-voltage features[J]. Automation of Electric Power Systems, 2019, 43(6): 156-164.
[22] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720-729.
[1] 孙东磊,孙可奇,杨金叶,曹永吉,袁振华,刘冬,张恒旭. 考虑灵活性需求的电力系统优化调度[J]. 山东大学学报 (工学版), 2022, 52(1): 120-127.
[2] 张恒旭,曹永吉,张怡,李常刚,阮佳程,TerzijaVLADIMIR. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报 (工学版), 2021, 51(5): 42-52.
[3] 李先栋,王飞,曹永吉,王李龑,王琳,卢奕,刘子菡. 基于层次分析法的梯次利用电池储能系统运行性能量化评估[J]. 山东大学学报 (工学版), 2019, 49(4): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!