您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 99-109.doi: 10.6040/j.issn.1672-3961.0.2021.487

• • 上一篇    

结合分辨矩阵改进的邻域粗糙集属性约简算法

季雨瑄1,叶军1,2*,杨震宇1,敖家欣1,王磊1,2   

  1. 1.南昌工程学院信息工程学院, 江西 南昌 330000;2.江西省水信息协同感知与智能处理重点实验室, 江西 南昌 330000
  • 发布日期:2022-08-24
  • 作者简介:季雨瑄(1998— ),女,江苏南京人,硕士研究生,主要研究方向为粗糙集和数据挖掘. E-mail: 1003528134@qq.com. *通信作者简介:叶军(1968— ),男,江西万安人,教授,硕士,主要研究方向为粗糙集和数据挖掘. E-mail: 2003992646@nit.edu.cn
  • 基金资助:
    江西省教育厅科技项目(GJJ211920,GJJ170995);国家自然科学基金项目(61562061)

An improved neighborhood rough set attribute reduction algorithm combined with resolution matrix

JI Yuxuan1, YE Jun1,2*, YANG Zhenyu1, AO Jiaxin1, WANG Lei1,2   

  1. 1. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330000, Jiangxi, China;
    2. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang 330000, Jiangxi, China
  • Published:2022-08-24

摘要: 针对基于邻域粗糙集属性重要度约简算法在某些决策表中约简正确率下降等问题,结合基于等价关系下的分辨矩阵知识,定义一种邻域决策系统下的分辨矩阵,邻域分辨矩阵由能够分辨不同邻域对象的条件属性子集组成。根据条件属性在邻域分辨矩阵中的占比提出一种属性重要度的度量方法,以新的重要度作为启发性因子,设计一种邻域决策系统下属性重要度启发性约简算法。该算法以核属性集作为初始集合,依次选择重要度大的属性加入到核集,直至找到最小属性约简时,算法终止。实例分析和UCI数据集试验结果表明,与基于属性依赖度的约简算法相比,该算法能够更有效地找到最小属性约简集,并且可以有效减少计算工作量,证明了算法的有效性和可实用性。

关键词: 邻域决策系统, 重要度, 属性约简, 邻域分辨矩阵, 最小约简集

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5): 341-356.
[2] 胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报,2008,19(3):640-649. HU Qinghua, YU Daren, XIE Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008, 19(3):640-649.
[3] LIN T Y. Granular computing on binary relations I:data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 18(1):107-121.
[4] HU Q, YU D, LIU J, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18):3577-3594.
[5] LIU Y, HUANG W, JIANG Y, et al. Quick attribute reduce algorithm for neighborhood rough set model[J]. Information Sciences, 2014, 271(7):65-81.
[6] 唐朝辉,陈玉明.邻域系统的不确定性度量方法[J].控制与决策,2014,29(4):691-695. TANG Chaohui, CHEN Yuming. Uncertainty measurement method for neighborhood systems[J]. Control and Decision, 2014, 29(4):691-695.
[7] 娄畅,刘遵仁,郭功振. 基于块集的邻域粗糙集的快速约简算法[J].计算机科学,2014,41(增刊2):337-339. LOU Chang, LIU Zunren, GUO Gongzhen. A fast reduction algorithm for neighborhood rough sets based on block sets[J]. Computer Science,2014, 41(Suppl. 2):337-339.
[8] 段洁,胡清华,张灵均,等. 基于邻域粗糙集的多标记分类特征选择算法[J].计算机研究与发展,2015,52(1):56-65. DUAN Jie, HU Qinghua, ZHANG Lingjun, et al. Feature selection algorithm for multi-label classification based on neighborhood rough sets[J]. Computer Research and Development, 2015, 52(1):56-65.
[9] LIN Y J, HU Q H, LIU J H, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied Soft Computing, 2016, 38:244-256.
[10] YUE X D, CHEN Y F, et al. Tri-partition neighborhood covering reduction for robust classification[J]. International Journal of Approximate Reasoning, 2017, 83:371-384.
[11] 何松华,康婵娟,鲁敏,等. 基于邻域组合测度的属性约简方法[J]. 控制与决策, 2016, 31(7): 1225-1230. HE Songhua, KANG Chanjuan, LU Min, et al. Attribute reduction method based on neighborhood combination measure[J]. Control and Decision, 2016, 31(7): 1225-1230.
[12] 徐波,张贤勇,冯山. 邻域粗糙集的加权依赖度及其启发式约简算法[J]. 模式识别与人工智能, 2018, 31(3):256-264. XU Bo, ZHANG Xianyong, FENG Shan. Weighted dependency of neighborhood rough sets and its heuristic reduction algorithm[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(3):256-264.
[13] 姚晟,徐风,吴照玉,等.基于邻域粗糙互信息熵的非单调性属性约简[J]. 控制与决策, 2019, 34(2):353-361. YAO Sheng, XU Feng, WU Zhaoyu, et al. Nonmonotonic attribute reduction based on neighborhood rough mutual information entropy[J]. Control and Decision, 2019, 34(2):353-361.
[14] CHEN Y M, XUE Y, MA Y, et al. Measures of uncertainty for neighborhood rough sets[J]. Knowledge-Based Systems, 2017, 120:226-235.
[15] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information system [M] //Intelligent Decision Support. Dordrecht, Poland: Springer, 1992: 331-362.
[16] HU X, CERCONE N. Learning in relational databases: a rough set approach[J]. Computational Intelligence, 1995, 11(2): 323-338.
[17] 叶军,朱华生,黎敏.一种属性重要性定义方法及其在约简中的应用[J].计算机应用研究,2016,33(7): 2075-2078. YE Jun, ZHU Huasheng, LI Min. A definition method of attribute importance and its application in reduction[J]. Computer Application Research, 2016,33(7): 2075-2078.
[18] 彭潇然,刘遵仁,纪俊. 基于邻域粗糙集下知识划分的信息表降维[J]. 计算机应用研究,2019,36(1):148-152. PENG Xiaoran, LIU Zunren, JI Jun. Information table dimensionality reduction based on knowledge partitioning under neighborhood rough sets[J]. Computer Application Research, 2019, 36(1): 148-152.
[19] 续欣莹,刘海涛,谢珺,等.信息观下基于不一致邻域矩阵的属性约简[J].控制与决策,2016,31(1):130-136. XU Xinying, LIU Haitao, XIE Jun, et al. Attribute reduction based on inconsistent neighborhood matrix from information view[J]. Control and Decision, 2016, 31(1): 130-136.
[20] 曹万里.混凝土框架结构加固改造的应用研究[D].哈尔滨:哈尔滨工业大学,2017. CAO Wanli. Application research on reinforcement and reconstruction of concrete frame structures[D]. Harbin: Harbin Institute of Technology, 2017.
[21] 徐波,冯山.基于邻域关系矩阵的属性约简算法[J].小型微型计算机系统,2019,40(8):1595-1560. XU Bo, FENG Shan. Attribute reduction algorithm based on neighborhood relation matrix[J]. Small and Microcomputer Systems, 2019, 40(8): 1595-1560.
[22] LUO S, MIAO D Q, ZHANG Z F, et al. A neighborhood rough set model with nominal metric embedding[J]. Information Sciences, 2020, 520:373-388.
[23] 盛魁,王伟,卞显福,等.混合数据的邻域区分度增量式属性约简算法[J].电子学报,2020,48(4):682-696. SHENG Kui, WANG Wei, BIAN Xianfu, et al. Neighborhood discrimination incremental attribute reduction algorithm for mixed data[J]. Journal of Electronics, 2020, 48(4): 682-696.
[24] YANG X, CHEN H, LI T, et al. Neighborhood rough sets with distance metric learning for feature selection[J]. Knowledge-Based Systems, 2021, 224: 107076.
[25] 范雪莉,冯海泓,原猛. 基于互信息的主成分分析特征选择算法[J]. 控制与决策,2013, 28(6): 915-919. FAN Xueli, FENG Haihong, YUAN Meng. Principal component analysis feature selection algorithm based on mutual information[J]. Control and Decision, 2013, 28(6): 915-919.
[26] 梁海龙,谢珺,续欣莹. 新的基于区分对象集的邻域粗糙集属性约简算法[J].计算机应用,2015,35(8): 2366-2370. LIANG Hailong, XIE Jun, XU Xinying. A new attribute reduction algorithm for neighborhood rough sets based on distinguishing object sets[J]. Computer Applications, 2015, 35(8): 2366-2370.
[27] ZHANG Y Z, WANG Y Q. Research on classification model based on neighborhood rough set and evidence theory[J]. Journal of Physics: Conference Series, 2021, 1746(1):012018.
[28] HU M, TSANG E C C, GUO Y T, et al. A novel approach to attribute reduction based on weighted neighborhood rough sets[J]. Knowledge-Based Systems, 2021, 220: 106908.
[1] 景运革,李天瑞. 基于知识粒度的增量约简算法[J]. 山东大学学报(工学版), 2016, 46(1): 1-9.
[2] 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14.
[3] 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11.
[4] 翟俊海,高原原,王熙照,陈俊芬. 基于划分子集的属性约简算法[J]. 山东大学学报(工学版), 2011, 41(4): 24-28.
[5] 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!