您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 117-126.doi: 10.6040/j.issn.1672-3961.0.2022.049

• • 上一篇    

基于NaHSO3活化KMnO4原位生成三价锰的有机污染物降解

郑玉珍1,孙波2*   

  1. 1.山东大学环境研究院, 山东 青岛 266237;2.山东大学环境科学与工程学院, 山东 青岛 266237
  • 发布日期:2022-06-23
  • 作者简介:郑玉珍(1996— ),女,山东潍坊人,硕士研究生,主要研究方向为水处理高级氧化技术. E-mail:yuzhen.zheng@163.com. *通信作者简介:孙波(1988— ),男,山东潍坊人,教授,主要研究方向为水处理高级氧化技术. E-mail:sdusunbo@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2020QB143);山东省泰山学者奖励计划(tsqn201909019);山东大学齐鲁青年学者资助项目

Degradation of organic pollutants by Mn(III)in situ generated from bisulfite activated permanganate

ZHENG Yuzhen1, SUN Bo2*   

  1. 1. Environment Research Institute, Shandong University, Qingdao 266237, Shandong, China;
    2. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • Published:2022-06-23

摘要: 为研究NaHSO3活化KMnO4过程中短时间内生成的非络合态三价锰对不同污染物的反应活性,结合停留光谱仪和动力学模型,分析三价锰氧化苯酚的表观二级速率常数,并通过相对速率法计算出三价锰氧化其余23种新兴污染物的表观二级速率常数,结果显示大部分常数介于1.14×106~4.38×106L/(mol·s)。通过定量构效关系分析新兴污染物与三价锰的反应机理,并对NaHSO3活化KMnO4过程中降解不同结构新兴污染物的效能进行预测,结果显示酚类化合物氧化速率与其官能团氧原子电荷呈负相关关系,与Hammett常数呈负相关关系,与最高占据分子轨道呈正相关关系,表明三价锰是一种亲电氧化剂,倾向于氧化具有富电子官能团的有机污染物。本研究结果有助于推动NaHSO3活化KMnO4工艺在水处理领域中的应用。

关键词: NaHSO3活化KMnO4, 三价锰, 定量构效关系, 有机污染物, 反应动力学

中图分类号: 

  • X52
[1] 王浩.中国未来水资源情势与管理需求[J]. 世界环境, 2011(2): 16-17. WANG Hao. The future situation of sater resources in China and its management requirements[J]. World Environment, 2011(2): 16-17.
[2] 陶格斯. 中国环境问题的历史变化[J]. 环境科学与管理, 2009, 34(8): 188-192. TAO Gesi. The historic changes of China's environmental problem[J]. Environmental Science and Management, 2009, 34(8): 188-192.
[3] 张利民, 夏明芳, 邹敏. 饮用水源有机毒物污染及其处理技术进展[J]. 环境导报,2001(3): 21-24. ZHANG Liming, XIA Mingfang, ZOU Min. The organic poison pollution of drinking water source and treatment technology progress[J]. Environment Herald, 2001(3): 21-24.
[4] NETA P, HURE R E.Free-radical chemistry of sulfite[J]. Environmental Health Perspectives, 1985, 64(6): 209-217.
[5] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(·OH/·O-)in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(2): 513-886.
[6] WESTERHOFF P, YOON Y, SNYDER S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science & Technology, 2005, 39(17): 6649-6663.
[7] 江进. 高价态锰、铁氧化降解水中典型有机物的特性与机理研究[D].哈尔滨:哈尔滨工业大学, 2009. JIANG Jin. Characteristics and mechanisms for oxidative degradation of typical organic compounds in aqueous solution by high valent manganese and iron species[D]. Harbin: Harbin Institute of Technology, 2009.
[8] 孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学, 2017. SUN Bo. Kinetics and mechanisms on the fast degradation of micro-organic contaminants by bisulfite activated permanganate[D]. Harbin: Harbin Institute of Techno-logy, 2017.
[9] 张静. RuⅢ催化KMnO4氧化去除水中新兴微污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG Jing. Performance and mechanism of RuIII-catalyzed permanganate oxidation of emerging micropollutants in water[D]. Harbin: Harbin Institute of Techn-ology, 2014.
[10] SIEGRIST R L, URYNOWICZ M A, WEST O R, et al. Principles and practices of in situ chemical oxidation using permanganate[M].Ohio, USA: Battelle Press, 2001: 323-324.
[11] PETRI B G, THOMSON N R, URYNOWICZ M A. Fundamentals of ISCO using permanganate[M]. New York, USA: Springer, 2011: 89-146.
[12] LEE E S, SCHWARTZ F W. Characteristics and applications of controlled-release KMnO4 for groundwater remediation[J]. Chemosphere, 2007, 66(11): 2058-2066.
[13] GUAN X H, HE D, MA J, et al. Application of permanganate in the oxidation of micropollutants: a mini review[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 405-413.
[14] TANIA R L, RODIL R, JOSE B Q, et al. Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate[J]. Water Research, 2013, 47(9): 3220-3230.
[15] HU L, STEMIG A M, WAMMER K H, et al. Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation[J]. Environmental Science & Technology, 2011, 45(8): 3635-3642.
[16] ZHANG J, SUN B, GUAN X H, et al. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben[J]. Environmental Science & Technology, 2013, 47(22): 13011-13019.
[17] XIAOYAN M A, SHIFEI H U, WANG H, et al. Kinetics of oxidation of dimethyl trisulfide by potassium permanganate in drinking water[J]. Frontiers of Environmental Science & Engineering in China, 2012, 6(2): 171-176.
[18] SUN B, GUAN X H, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(III)[J]. Environmental Science & Technology, 2015, 49(20): 12414-12421.
[19] SUN B, BAO Q Q, GUAN X H. Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process[J]. Journal of Hazard Mater, 2018, 352: 157-164.
[20] GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn(III)stabilizing agent in activating permanganate(Mn(VII))for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 327: 418-422.
[21] ZHONG S F, ZHANG H C. New insight into the reactivity of Mn(III)in bisulfite/permanganate for organic compounds oxidation: the catalytic role of bisulfite and oxygen[J]. Water Research, 2019, 148: 198-207.
[22] LEE Y, VON GUNTEN U. Quantitative structure-activity relationships(QSARs)for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19): 6177-6195.
[23] TRATNYEK P G, HOIGNE J, ZEYER J, et al. QSAR analyses of oxidation and reduction rates of env-ironmental organic pollutants in model systems[J]. Science of the Total Environment, 1991, 109: 327-341.
[24] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8): 2999-3093.
[25] MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions. I[J]. The Journal of Chemical Physics, 1955, 23(10): 1833-1840.
[26] SUN B, LI D, LINGHU W, et al. Degradation of ciprofloxacin by manganese(III)intermediate: insight into the potential application of permanganate/bisulfite process [J]. Chemical Engineering Journal, 2018, 339: 144-152.
[1] 肖迪,廉静,纪少波,赵盛晋,徐怀民. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报(工学版), 2017, 47(4): 59-63.
[2] 孙宏宇, 张兆玲, 董玉平. 床层压降对主动配风式生物质气化影响分析[J]. 山东大学学报(工学版), 2014, 44(5): 78-82.
[3] 袁庆华,刘晓健,李蕾,裘南畹 . 反应动力学理论和n型金属氧化物EF的变化范围[J]. 山东大学学报(工学版), 2006, 36(4): 114-116 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!