您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (1): 93-102.doi: 10.6040/j.issn.1672-3961.0.2021.344

• • 上一篇    

基于FEM-SPH耦合的TBM滚刀切削仿真与试验研究

耿麒1,2,张俊杰2,汪珂3,路宇峰2,谢立扬2,叶敏2   

  1. 1. 西藏天路股份有限公司博士后工作站, 西藏 拉萨 850009;2. 长安大学工程机械学院, 陕西 西安 710064;3. 陕西省铁道及地下交通工程重点实验室(中铁一院), 陕西 西安 710043
  • 发布日期:2022-02-21
  • 作者简介:耿麒(1989— ),男,山东淄博人,副教授,博士,主要研究方向为隧道掘进装备开掘系统. E-mail:gengqi@chd.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(51805042);陕西省高校科协青年人才托举计划资助(20200411);长安大学中央高校基本科研业务费专项资金资助(300102251201);西藏自治区自然科学基金项目(ZRKX2021000251);中铁一院科研19-87(220225210213)

Simulation and experimental study on cutting process of tunnel boring machine(TBM)cutters based on FEM-SPH coupled method

GENG Qi1,2, ZHANG Junjie2, WANG Ke3, LU Yufeng2, XIE Liyang2, YE Min2   

  1. 1. Post-Doctoral Research Center, Tibet Tianlu Co., Ltd., Lasa 850009, Tibet, China;
    2. School of Construction Machinery, Chang'an University, Xi'an 710064, Shaanxi, China;
    3. Shaanxi Railway and Underground Traffic Engineering Key Laboratory(FSDI), Xi'an 710043, Shaanxi, China
  • Published:2022-02-21

摘要: 针对现有隧道掘进机(tunnel boring machine, TBM)滚刀切削过程有限元仿真难以复现密实核传力演化机制所致的“刀下超破、刀间欠破”问题,采用有限元方法(finite element method, FEM)和光滑粒子流体动力学(smooth particle hydrodynamics, SPH)相耦合的数值方法构建TBM双滚刀顺次回转切削的三维仿真模型,选用基于Rankine拉伸截断的摩尔-库伦(Mohr-Coulomb, M-C)弹塑性本构模型,通过模拟单轴压缩和巴西劈裂试验中试样损伤失效过程确立SPH粒子临界转化阈值,开展全尺度TBM刀盘掘进试验以验证所建仿真模型。进行多组仿真研究刀间距对切削效果、法向力、滚动力、比能的影响规律。仿真结果表明:所建仿真模型可直观复现密实核演化、侧向裂纹联通和刀间碴块飞溅等宏观物理现象;仿真与试验的滚刀平均法向力、滚动力相对误差分别为2.2%和11%,验证了仿真模型的可靠性;当刀间距在60~110 mm变化时,切削比能随刀间距增大呈先减小后增大的趋势,最优刀间距为90 mm。本研究所建仿真模型和所得研究结果可为TBM滚刀破岩研究提供新思路。

关键词: 隧道掘进机, 滚刀切削, 有限元方法, 光滑粒子流体动力学, 刀间距

中图分类号: 

  • TU94
[1] 洪开荣, 王杜娟, 郭如军. 我国硬岩掘进机的创新与实践[J]. 隧道建设, 2018, 38(4): 519-537. HONG Kairong, WANG Dujuan, GUO Rujun. Innovation and practice of hard rock TBM in china[J]. Tunnel Construction, 2018, 38(4): 519-537.
[2] LIU H, KOU S, LINDQVIST P. Numerical simulation of the rock fragmentation process induced by indenters[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39: 491-505.
[3] MA H, YIN L, JI H. Numerical study of the effect of confining stress on rock fragmentation by TBM cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 1021-1033.
[4] GONG Q, ZHAO J, JIAO Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005, 20: 183-191.
[5] GONG Q, JIAO Y, ZHAO J. Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2006, 21: 46-55.
[6] 莫振泽, 李海波, 周青春, 等. 基于UDEC的隧道掘进机滚刀破岩数值模拟研究[J]. 岩土力学, 2012, 33(4): 1196-1202. MO Zhenze, LI Haibo, ZHOU Qingchun, et al. Research on numerical simulation of rock breaking using TBM disc cutters based on UDEC method[J]. Rock and Soil Mechanics, 2012, 33(4): 1196-1202.
[7] 彭琦. 围压对TBM滚刀破岩影响机制研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2743-2749. PENG Qi. Research on influence mechanism of confining pressure on rock breaking by TBM cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.1): 2743-2749.
[8] 苏利军,孙金山,卢文波. 基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J]. 岩土力学, 2009, 30(9):2823-2829. SU Lijun, SUN Jinshan, LU Wenbo. Research on numerical simulation of rock fragmentation by TBM cutters using particle flow method[J]. Rock and Soil Mechanics, 2009, 30(9): 2823-2829.
[9] 孙金山,陈明,陈保国, 等. TBM滚刀破岩过程影响因素数值模拟研究[J]. 岩土力学, 2011, 32(6): 1891-1897. SUN Jinshan, CHEN Ming, CHEN Baoguo, et al. Numerical simulation of influence factors for rock fragmentation by TBM cutters [J]. Rock and Soil Mechanics, 2011, 32(6): 1891-1897.
[10] 谭青,易念恩,夏毅敏,等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报, 2012, 31(12): 2453-2464. TAN Qing, YI Nianen, XIA Yimin, et al. Research on rock dynamic fragmentation characteristics by TBM cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453-2464.
[11] 谭青,李建芳,夏毅敏,等. 盘形滚刀破岩过程的数值研究[J]. 岩土力学, 2013, 34(9): 2707-2714. TAN Qing, LI Jianfang, XIA Yimin, et al. Numerical research on rock fragmentation process by disc cutter[J]. Rock and Soil Mechanics, 2013, 34(9): 2707-2714.
[12] MOON T, OH J. A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J]. Rock Mechanics and Rock Engineering, 2012, 45: 837-849.
[13] LI X, LI H, LIU Y, et al. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs[J]. Tunnelling and Underground Space Technology, 2016, 53: 96-108.
[14] ZHANG X, JI P, LIU Q, et al. Physical and numerical studies of rock fragmentation subject to wedge cutter indentation in the mixed ground[J]. Tunnelling and Underground Space Technology, 2018, 71: 354-365.
[15] XU H, GENG Q, SUN Z, et al. Full-scale granite cutting experiments using tunnel boring machine disc cutters at different free-face conditions[J]. Tunnelling and Underground Space Technology, 2021, 108: 103719.
[16] INNAURATO N, OGGERI C, ORESTE P P, et al. Experimental and numerical studies on rock breaking with TBM tools under high stress confinement[J]. Rock Mechanics and Rock Engineering, 2007, 40: 429-451.
[17] CHO J W, JEON S. Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method[J]. Tunnelling and Underground Space Technology, 2010, 25: 230-244.
[18] CHO J W, JEON S. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement[J]. Tunnelling and Underground Space Technology, 2013, 35: 37-54.
[19] HAN M, CAI Z, QU C, et al. Tunneling simulation and strength analysis of cutterhead system of TBM[C] //Processdings of ICIRA 2015. Portsmouth, UK: Springer Press: 445-455.
[20] HAN M, CAI Z, QU C, et al. Dynamic numerical simulation of cutterhead loads in TBM tunnelling[J]. Tunnelling and Underground Space Technology, 2017, 70: 286-298.
[21] GENG Q, WEI Z, REN J. New rock material definition strategy for FEM simulation of the rock cutting process by TBM disc cutters[J]. Tunnelling and Underground Space Technology, 2017, 65: 179-186.
[22] XIA Y, GUO B, CONG G, et al. Numerical simulation of rock fragmentation induced by a single TBM disc cutter close to a side free surface[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 40-48.
[23] CHOI S O, LEE S J. Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code[J]. KSCE Journal of Civil Engineering, 2014, 19: 1129-1138.
[24] ZHANG Z, ZHANG K, DONG W, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model[J]. Rock Mechanics and Rock Engineering, 2020, 53: 3485-3506.
[25] LABRA C, ROJEK J, O(~overN)ATE E. Discrete/finite element modelling of rock cutting with a TBM disc cutter[J]. Rock Mechanics and Rock Engineering, 2017, 50: 621-638.
[26] 张志春,强洪夫,傅学金,等. 基于SPH-FEM转换算法的7.62 mm步枪弹冲击30CrMnSiA钢板的数值计算 [J]. 计算物理, 2012, 29(1): 73-81. ZHANG Zhichun, QIANG Hongfu, FU Xuejin, et al. A 7.62 mm rifle bullet impacting on a 30crmnsia steel target plate: SPH-FEM conversion algorithm[J]. Chinese Journal of Computational Physics, 2012, 29(1): 73-81.
[27] 张志春,强洪夫,高巍然. 一种光滑粒子流体动力学-有限元法转换算法及其在冲击动力学中的应用 [J]. 西安交通大学学报, 2011, 45(1): 105-110. ZHANG Zhichun, QIANG Hongfu, GAO Weiran. Conversion of 3D distorted finite elements into SPH particles during impact dynamic deformation[J]. Journal of Xi'an Jiaotong University, 2011, 45(1): 105-110.
[28] 欧阳义平, 杨启. SPH法数值仿真三维切削破岩和切削力估算 [J]. 上海交通大学学报, 2016, 50(1): 84-90. OUYANG Yiping, YANG Qi. Numerical simulation of rock cutting in 3D with SPH method and estimation of cutting force[J]. Journal of Shanghai Jiaotong University, 2016, 50(1): 84-90.
[29] DAS R, CLEARY P W. Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(1): 47-60.
[30] XIAO N, ZHOU X, GONG Q. The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method[J]. Tunnelling and Underground Space Technology, 2017, 61: 90-103.
[31] PAN Y, LIU Q, PENG X, et al. Full-scale rotary cutting test to study the influence of disc cutter installment radius on rock cutting forces[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2223-2236.
[32] GERTSCH R, GERTSCH L, ROSTAMI J. Disc cutting tests in Colorado red granite: implications for TBM performance prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 238-246.
[33] ROSTAMI J. Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 172-186.
[34] TUMAC D, BALCI C. Investigations into the cutting characteristics of CCS type disc cutters and the comparison between experimental, theoretical and empirical force estimations[J]. Tunnelling and Underground Space Technology, 2015, 45: 84-98.
[35] XIA Y, GUO B, TAN Q, et al. Comparisons between experimental and semi-theoretical cutting forces of CCS disc cutters[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1583-1597.
[1] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
[2] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[3] 王建明,裴信超,樊现行,刘伟,曹雁超. SPH耦合FEM模拟弹丸撞击对表面形貌的影响[J]. 山东大学学报(工学版), 2013, 43(5): 87-92.
[4] 焦培刚 周以齐 王喜仓. 自由表面流动的三维SPH数值仿真研究[J]. 山东大学学报(工学版), 2009, 39(6): 92-96.
[5] 吕国仁,闫书明,白书锋,贾 宁,马 亮 . 高速公路新型波形梁护栏端头实车碰撞性能研究[J]. 山东大学学报(工学版), 2008, 38(4): 47-52 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!