您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (1): 39-46.doi: 10.6040/j.issn.1672-3961.0.2021.113

• • 上一篇    

粉土基泡沫轻质土三轴力学特性

张宏博1,刘明朋1,孙玉海2,杨强3,宋修广1,李晓亮4   

  1. 1. 山东大学齐鲁交通学院, 山东 济南 250061;2. 山东省交通规划设计院集团有限公司, 山东 济南 250031;3. 济南金衢公路勘察设计研究有限公司, 山东 济南 250101;4. 山东高速股份有限公司, 山东 济南 250014
  • 发布日期:2022-02-21
  • 作者简介:张宏博(1977— ),男,山东金乡人,副教授,博士,主要研究方向为边坡与路基支挡. E-mail:zhanghongbo@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52002224);山东省重点研发计划资助项目(重大科技创新工程)(2020CXGC010118)

Triaxial mechanical characteristic of the silt-based foamed concrete

ZHANG Hongbo1, LIU Mingpeng1, SUN Yuhai2, YANG Qiang3, SONG Xiuguang1, LI Xiaoliang4   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China;
    2. Shandong Transportation Planning and Design Institute Co., Ltd., Jinan 250031, Shandong, China;
    3. Jinan Jinqu Highway Survey and Design Co., Ltd., Jinan 250101, Shandong, China;
    4. Shandong High-Speed Company Limited, Jinan 250014, Shandong, China
  • Published:2022-02-21

摘要: 引入黄泛区粉土作细集料,介绍一种新的路基填料:粉土基泡沫轻质土。为研究粉土基轻质土的压缩及剪切性能,进行了三轴试验,并考虑围压、湿密度和粉土掺量对力学性能指标的影响。结果显示:三轴试验下的粉土基轻质土的应力-应变曲线符合典型的弹塑性模型,曲线整体上可分为线弹性段、弹塑性段及应力平台阶段;粉土基轻质土的破坏形态在低围压下符合典型的剪切破坏特性,但是当围压较高时多呈端部压碎破坏;围压的增大使得峰值应力增大,但粉土掺量的增大则会降低峰值应力,密度与峰值应力可以近似用指数函数模拟。通过摩尔-库伦强度准则研究粉土基轻质土的抗剪强度,结果显示,粉土基轻质土是一种抗剪性能良好的材料,其内摩擦角与黏聚力随密度提高很大,但是粉土的掺入会降低抗剪性能。基于试验数据,采用椭圆屈服面拟合粉土基轻质土的屈服点,建立了屈服面参数与湿密度与粉土掺量的经验性关系。

关键词: 粉土, 三轴试验, 应力应变特征, 峰值应力, 抗剪强度, 屈服面模型

中图分类号: 

  • TU525.9
[1] 周云东,王勇,黎冰,等. 气泡混合轻质土试样制备研究[J]. 岩土力学, 2018, 39(12): 4413-4420. ZHOU Yundong, WANG Yong, LI Bing, et al. Study of the preparation of air-foam treated lightweight soil samples[J]. Rock and Soil Mechanics, 2018, 39(12): 4413-4420.
[2] 陈永辉,石刚传,曹德洪,等. 气泡混合轻质土置换路基控制工后沉降研究[J]. 岩土工程学报, 2011, 33(12): 1854-1862. CHEN Yonghui, SHI Chuangang, CAO Dehong, et al. Control of post-construction settlement by replacing subgrade with foamed cement banking[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1854-1862.
[3] 李硕,杨军宏. 泡沫轻质土在高速公路改扩建工程中的应用[J]. 公路交通科技, 2018, 35(增刊1): 1-6. LI Shuo, YANG Junhong. Application of foamed lightweight soil in expressway reconstruction and extension project[J]. Journal of Highway and Transportation Research and Development, 2018, 35(Suppl.1): 1-6.
[4] 李茜莎. 耐碱玻纤和粉煤灰对轻质混凝土强度及冻融耐久性的影响研究[J]. 混凝土与水泥制品, 2020(5): 51-55. LI Xisha. Experimental study on strength and freeze-thaw durability of alkali-resistant glass fiber fly ash lightweight concrete[J]. China Concrete and Cement Products, 2020(5): 51-55.
[5] 欧孝夺,彭远胜,莫鹏,等. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(增刊1): 241-245. OU Xiaoduo, PENG Yuansheng, MO Peng, et al. Study on the physical mechanical and hydraulic properties of foamed mixture lightweight soil mixed with bauxite tailings[J]. Materials Reports, 2020, 34(Suppl.1): 241-245.
[6] ZHANG H B, QI X L, WAN L Y, et al. Properties of silt-based foamed concrete: a type of material for use in backfill behind an abutment[J]. Construction and Building Materials, 2020, 261: 119966.
[7] ZHANG H B, QI X L, MA C Y, et al. Effect analysis of soil type and silt content on silt-based foamed concrete with different density[J]. Materials, 2020, 13(17): 3866.
[8] 吴海刚,王宝军,郑永红, 等. 大规模采用泡沫轻质土处理软基设计方法探讨[J]. 铁道工程学报, 2016, 33(2): 28-33. WU Haigang, WANG Baojun, ZHENG Yonghong, et al. Research on the design method of the large-scale foam light soil for soft ground treatments[J]. Journal of Railway Engineering Society, 2016, 33(2): 28-33.
[9] 刘鑫,甘亮琴,盛柯,等. 基于加速应力试验方法的气泡混合轻质土使用寿命估计研究[J]. 岩土工程学报, 2017, 39(10): 1793-1799. LIU Xin, GAN Liangqin, SHENG Ke, et al. Experi-mental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799.
[10] 陈卫忠,田洪铭,杨阜东, 等. 泡沫混凝土预留变形层对深埋软岩隧道长期稳定性影响研究[J]. 岩土力学, 2011, 32(9): 2577-2583. CHEN Weizhong, TIAN Hongming, YANG Fudong, et al. Study of effects of foam concrete preset deformation layer on long-term stability of deep soft rock tunnel[J]. Rock and Soil Mechanics, 2011, 32(9): 2577-2583.
[11] 李广良,郭伟国,赵融,等. 轻质泡沫混凝土的力学性能与唯象本构模型[J]. 材料科学与工程学报, 2012, 30(3): 428-431. LI Guangliang, GUO Weiguo, ZHAO Rong, et al. Mechanical properties and phenomenological constitutive model of lightweight foamed concrete[J]. Journal of Materials Science and Engineering, 2012, 30(3): 428-431.
[12] 赵全胜,梁小勇. 气泡混合轻质土变形特性三轴试验研究[J]. 公路, 2010(10): 174-176. ZHAO Quansheng, LIANG Xiaoyong. Triaxial test and study on constrictive deformation property of foamed cement banking[J]. Highway, 2010(10): 174-176.
[13] 赵运会,刘华强,樊晓一,等. 三轴压缩条件下气泡轻质土应力-应变特性及破坏机制研究[J]. 路基工程, 2016(4): 74-77. ZHAO Yunhui, LIU Huaqiang, FAN Xiaoyi, et al. Study on stress-strain characteristics and failure mechanism of foamed cement banking under triaxial compression[J]. Subgrade Engineering, 2016(4): 74-77.
[14] 张明然,胡宏骏,王志佳, 等. PE-黏土轻质混合土三轴压缩试验研究[J]. 四川建筑科学研究, 2014, 40(3): 125-127. ZHANG Mingran, HU Hongjun, WANG Zhijia, et al. Experimental study on triaxial compression of PE-clay lightweight mixed soil[J]. Sichuan Building Science, 2014, 40(3): 125-127.
[15] 袁化强,朱登元,张宏庆,等. 三轴应力条件下泡沫轻质土压缩特性[J]. 硅酸盐通报, 2020, 39(10): 3379-3385. YUAN Huaqiang, ZHU Dengyuan, ZHANG Hongqing, et al. Compression characteristics of foamed lightweight soil under triaxial stress[J]. Building of the Chinese Ceramic Society, 2020, 39(10): 3379-3385.
[16] TAN X, CHEN W, LIU H, et al. Stress-strain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018095.
[17] SU B, ZHOU Z, LI Z, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading[J]. Construction and Building Materials, 2019, 209(10): 41-51.
[18] 苏步云. 泡沫混凝土力学性能及其弹塑性损伤本构研究[D]. 太原: 太原理工大学, 2017. SU Buyun. Mechanical Properties and elastoplastic damage constitutive model of foamed concrete[D]. Taiyuan: Taiyuan University of Technology, 2017.
[19] HIBBITT K, SORENSEN I. Abaqus theory manual and analysis user's manual[M]. Pawtucket, USA: Hibbitt, Karlsson and Sorensen Inc, 2002.
[1] 赵之仲,柳泓哲,刘桂强,杨振宇. ATB柔性基层与半刚性基层的层间抗剪规律[J]. 山东大学学报 (工学版), 2019, 49(3): 57-62.
[2] 祝学勇,胡文凯,邢庆涛,李培健,商庆森,满铁强. 黄河冲淤积非饱和高塑性黏土的抗剪性状[J]. 山东大学学报(工学版), 2016, 46(1): 62-69.
[3] 杨俊, 杨志. 冻融循环条件下水泥稳定风化集料抗剪强度试验研究[J]. 山东大学学报(工学版), 2014, 44(5): 42-48.
[4] 付昌, 蒋明镜, 申志福, 王华宁, 吴晓峰. 非饱和土动剪模量与阻尼比影响因素试验[J]. 山东大学学报(工学版), 2014, 44(5): 35-41.
[5] 弋晓明1,2,李术才1,王松根2,刘振清2. 非饱和粉土回弹模量的应力依赖性与水敏感性耦合分析[J]. 山东大学学报(工学版), 2013, 43(2): 84-88.
[6] 朱登元1,2,管延华1*. 毛细水作用对粉土路基稳定性的影响[J]. 山东大学学报(工学版), 2012, 42(1): 93-98.
[7] 李晓静1,姚凯2*,李术才1,张超2. 黄泛区饱和粉土动强度特性试验研究[J]. 山东大学学报(工学版), 2011, 41(3): 78-81.
[8] 丁万涛,李术才. 基于筋材断裂的加筋膨胀土强度特性分析[J]. 山东大学学报(工学版), 2011, 41(3): 89-92.
[9] 张宏博,宋修广,黄茂松,商庆森 . 不同卸荷应力路径下岩体破坏特征试验研究[J]. 山东大学学报(工学版), 2007, 37(6): 83-86 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!