您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 113-118.doi: 10.6040/j.issn.1672-3961.0.2020.159

• • 上一篇    下一篇

小电阻接地系统接地故障综合保护方案

黄福全1,王廷凰1,张海台2,刘子俊1,李国栋1   

  1. 1. 深圳供电局有限公司, 广东 深圳 518000;2. 山东科汇电力自动化股份有限公司, 山东 淄博 255001
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:黄福全(1977— ),男,广东肇庆人,高级工程师,硕士,主要研究方向为继电保护,自动化和网络安全. E-mail:szwthkjxm@163.com
  • 基金资助:
    深圳市供电局科技资助项目(SZKJXM20170445)

Comprehensive protection scheme for grounding fault in low resistance grounding system

HUANG Fuquan1, WANG Tinghuang1, ZHANG Haitai2, LIU Zijun1, LI Guodong1   

  1. 1. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518000, Guangdong, China;
    2. Shandong Kehui Power Automation Co., Ltd., Zibo 255001, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 针对现有小电阻接地系统接地保护选择性差、灵敏度低且高阻接地故障检测能力不足等问题,研究分析小电阻接地系统单相接地故障后零序电流特征,利用上下级纵向配合,提出基于零序过电流的多级接地保护和延时低定值高灵敏度接地保护,给出保护配置方案和各级保护整定原则。利用线路出口和中性线零序电流幅值横向比较,提出高阻接地故障选线方法。在典型小电阻接地配电网结构下的仿真验证了所提出接地故障综合保护方案的可行性与可靠性。

关键词: 小电阻接地系统, 接地保护, 零序电流, 高阻接地, 综合保护

Abstract: Because the existing grounding protection in low resistance grounding system had imcomplete protection configuration, poor selectivity, low sensitivity and insufficient ability to detect high-imedance grounding fault, the characteristics of zero sequence current while single-phase grounding fault occured in low resistance grounding system was analyzied. With the help of longitudinal cooperation between the upper and lower protections, the multistage grounding protection based on zero sequence current and the high sensitivity grounding protection based on low setting and time delay were proposed, and also the grounding protection configuration scheme and the setting principles at all levels were discussed. Fault line selection method was proposed for the high-impedance grounding fault using the lateral comparasion of the amplitudes of zero sequence currents between the outlet of each feeder and the neutral line. The feasibility and reliability of the proposed comprehensive protection scheme for grounding fault were verified by the simulation in a typical small resistance grounding distribution network.

Key words: low resistance grounding system, grounding protection, zero sequence current, high resistance grounding, comprehensive protection

中图分类号: 

  • TM773
[1] 徐丙垠, 李天友, 薛永端. 配电网继电保护与自动化[M]. 北京:中国电力出版社,2017.
[2] 刘育权, 蔡燕春, 邓国豪, 等. 小电阻接地方式配电系统的运行与保护[J]. 供用电,2015,32(6): 30-35. LIU Yuquan, CAI Yanchun, DENG Guohao, et al. Operation and protection in distribution system with small resistance grounding mode[J]. Distribution & Utilization,2015, 32(6): 30-35.
[3] 李海峰, 陈嘉权, 曾德辉, 等. 小电阻接地系统高灵敏性零序电流保护[J].电力自动化设备,2018,38(9): 198-204. LI Haifeng, CHEN Jiaquan, ZENG Dehui,et al. High sensitive zero-sequence current protection for low-resistance grounding system[J]. Electric Power Automatin Equipment, 2018, 38(9): 198-204.
[4] 林志超, 汪洋, 罗步升, 等. 小电阻接地系统高灵敏度接地保护配置与整定[J].电力系统及其自动化学报,2020,32(3): 25-32. LIN Zhichao, WANG Yang, LUO Busheng, et al. Configuration and tuning of high-sensitivity grounding fault protection for low-resistance grounding system[J]. Proceeding of the CSU-EPSA, 2020, 32(3):25-32.
[5] 薛永端, 刘珊, 王艳松, 等. 基于零序电压比率制动的小电阻接地系统接地保护[J].电力系统自动化, 2016,40(16):112-117. XUE Yongduan, LIU Shan, WANG Yansong, et al. Grounding fault protection in low resistance grounding system based on zero-sequence voltage ratio restraint[J]. Automation of Electric Power Systems,2016,40(16):112-117.
[6] 汪洋, 薛永端, 徐丙垠, 等. 小电阻接地系统接地故障反时限零序过电流保护[J].电力系统自动化,2018, 42(20):150-157. WANG Yang, XUE Yongduan, XU Bingyin. Zero-sequence inverse-time overcurrent protection in low resistance grounding system with grounding fault[J]. Automation of Electric Power Systems, 2018, 42(20):150-157.
[7] 许庆强, 许杨, 周栋骥, 等. 小电阻接地配电网线路保护单相高阻接地分析[J]. 电力系统自动化,2010,34(9):91-94. XU Qingqiang, XU Yang, ZHOU Dongji, et al. Analysis of distribution network line relay protection during single-phase high-resistance grounding faults in low resistance neutral grounded system[J]. Automation of Electric Power Systems, 2010, 34(9):91-94.
[8] 徐丙垠, 李天友, 薛永端, 等. 智能配电网建设中的继电保护问题[J]. 供用电,2012,39(3): 13-21. XU Bingyin, LI Tianyou, XUE Yongduan, et al. Relay protection issues in construction of smart distribution network lecture 3 service quality oriented distribution protection issues[J]. Distribution & Utilization, 2012, 39(3):13-21.
[9] 张良,徐丙垠. 配电网分支线保护的配置与整定[J].电网技术,2016,40(5):1589-1594. ZHANG Liang, XU Bingyin. Configuration and tuning of sub-feeder protection in distribution network[J]. Power System Technology, 2016, 40(5):1589-1594.
[10] 林志超,刘鑫星,王英民,等. 基于零序电流比较的小电阻接地系统接地故障保护[J].电力系统保护与控制,2018,46(22):15-21. LIN Zhichao, LIU Xinxing, WANG Yingmin, et al. Grounding fault protection based on zero sequence current comparison in low resistance grounding system[J]. Power System Protection and Control, 2018, 46(22):15-21.
[11] 盛亚如,丛伟,卜祥海,等. 基于中性点电流与零序电流投影量差动的小电阻接地系统高阻接地故障判断方法[J]. 电力自动化设备,2019,39(3):17-22. SHENG Yaru, CONG Wei, BU Xianghai, et al. Detection method of high impedance grounding fault based on differential current of zero-sequence current projection and neutral point current in low-resistance grounding system[J]. Electric Power Automation Equipment, 2019, 39(3):17-22.
[12] 耿建昭,王宾,董新洲,等. 中性点有效接地配电网高阻接地故障特征分析及检测[J].电力系统自动化,2013,37(16):85-91. GENG Jianzhao, WANG Bin, DONG Xinzhou, et al. Analysis and detection of high impedance grounding fault in neutral point effectively grounding distribution network[J]. Automation of Electric Power Systems, 2013, 37(16):85-91.
[13] KWON W H, LEE G W, PARK Y M. High impedance fault detection utilizing incremental variance of normalized even order harmonic power[J]. IEEE Trans on Power Delivery, 1991, 6(2):557-564.
[14] SAMANTARAY S R, PANIGRAHI B K, DASH P K. High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network[J]. IET Generation, Transmission and Distribution, 2008, 2(2):261-270.
[15] HAGHIFAM M R, SEDIGHI A R, MALIK O P. Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection[J]. IEE Proceedings: Generation, Transmission and Distribution, 2006, 153(3):359-367.
[1] 刘远龙,刘伟生,王鹏玮,吴斌,张恒旭,徐丙垠. 基于频带有功功率系数的接地故障方向保护方法[J]. 山东大学学报 (工学版), 2021, 51(1): 76-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[6] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[7] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .