您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 40-47.doi: 10.6040/j.issn.1672-3961.0.2020.202

• • 上一篇    

振荡翼改进运动模型的能量捕获性能分析

乔凯1,王启先2,王勇1*,谢玉东1   

  1. 1. 山东大学机械工程学院, 山东 济南 250061;2. 浙江大学海洋学院, 浙江 杭州 310058
  • 发布日期:2020-12-15
  • 作者简介:乔凯(1995— ),男,山东济宁人,硕士研究生,主要研究方向为振荡翼捕能与磁流体发电技术. E-mail:201834019@mail.sdu.edu.cn. *通信作者简介:王勇(1963— ),男,山东齐河人,教授,博士生导师,主要研究方向为流体控制技术,新能源设备开发. E-mail:meywang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51875316);山东省自然科学基金资助项目(ZR2019MEE025)

Energy harvesting performance analysis on improved motion model of oscillating hydrofoil

QIAO Kai1, WANG Qixian2, WANG Yong1*, XIE Yudong1   

  1. 1. School of mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Published:2020-12-15

摘要: 为了提高振荡水翼的水动力性能和能量捕获效率,基于传统简谐运动模型提出改进运动模型,通过引入俯仰运动系数k,推导改进后俯仰运动规律的一般形式,利用Fluent软件建立水翼的二维模型,综合分析半主动振荡模型下不同俯仰运动系数、折算频率和俯仰振幅等运动参数对水翼能量捕获性能的影响。结果表明:与传统简谐运动模型相比,改进运动模型能够使水翼升力系数在较长时间段内维持较大数值,提高水翼的升力系数和捕能效率;在相同的折算频率和俯仰振幅下,减小俯仰运动系数会增大俯仰角转动的角速度,进而增大俯仰运动所消耗的能量;不同俯仰振幅下对应不同的最优折算频率,折算频率越低水翼的捕能性能越不稳定,俯仰振幅越大,转动俯仰角所消耗的能量越多。在给定参数条件下,水翼的能量转化效率可超过40%。

关键词: 振荡翼, 改进运动模型, 俯仰运动系数, 水动力特性, 捕能效率

Abstract: In order to improve the hydrodynamic performance and energy harvesting efficiency of the oscillating hydrofoil, an improved motion model was proposed based on the traditional simple harmonic motion model. By introducing the pitch motion coefficient k, the general form of the improved pitch motion law was deduced. The two-dimensional model of the hydrofoil was established using Fluent software, and we further analyzed the effects of different pitch motion coefficients, motion frequency and pitch amplitude on the hydrofoil energy capture performance under the semi-active oscillation model. The results showed that, when compared with the traditional simple harmonic motion model, the improved motion model could make the lift coefficient of hydrofoil maintain a larger value for a longer period of time, meanwhile the lift coefficient and energy capture efficiency of the hydrofoil also were improved. Under the same value of reduced frequency and pitch amplitude, reducing the pitch motion coefficient could increase the angular velocity of the pitch angle rotation, thereby increasing the energy consumed by the pitch motion. Different pitch amplitude corresponded to different optimal reduced frequencies. The lower the reduced frequency, the more unstable energy-capturing performance of the hydrofoil, the greater the pitch amplitude, and the more energy consumed for turning the pitch angle. Under the given parameters, the energy conversion efficiency of the hydrofoil could exceed 40%.

Key words: oscillating hydrofoil, improved motion model, pitch motion coefficient, hydrodynamic characteristic, energy-capturing efficiency

中图分类号: 

  • TH766
[1] MA Penglei, WANG Yong. Numerical analysis of a tidal current generator with dual flapping wings[J]. Energy, 2018, 155(7):1077-1089.
[2] 逯建伟. 振荡水翼捕获潮流能系统的水动力和能量捕获性能研究[D]. 济南: 山东大学, 2014. LÜ Jianwei. Study on hydrodynamic and energy extraction performance of a tidal energy extraction system based on an oscillating hydrofoil[D]. Jinan:Shandong University, 2014.
[3] MCKINNEY W, DELAURIER J. Wingmill: an oscillating-wing windmill[J]. Journal of Energy, 1981, 5(2):109-115.
[4] KIM Jihoon, QUANGLE Tuyen, HWANKO Jin, et al. Experimental and numerical study of a dual configuration for a flapping tidal current generator[J]. Bioinspiration & Biomimetics, 2015, 10(4):1-16.
[5] LIU Wendi, XIAO Qing,CHENG Fai. A bio-inspired study on tidal energy extraction with flexible flapping wings[J]. Bioinspiration & Biomimetics, 2013, 8(3):1-16.
[6] LU Kun, XIE Yonghui, ZHANG Di. Nonsinusoidal motion effects on energy extraction performance of a flapping foil[J]. Renewable Energy, 2014, 64(4):283-293.
[7] 吕坤, 谢永慧, 张荻.非正弦振型对沉浮翼型推力产生的影响[J]. 西安交通大学学报, 2013, 47(9):60-64. L(¨overU)Kun, XIE Yonghui, ZHANG Di. Numerical study of Nonsinusoidal motion Effect on Plunging airfoil Propulsion[J]. Journal of Xi'an Jiaotong University, 2013, 47(9):60-64.
[8] TIAN Fangbao, YOUNG John, LAI Joseph C S. Improving power-extraction efficiency of a flapping plate: from passive deformation to active control[J]. Journal of Fluids & Structures, 2014, 51(1):384-392.
[9] LIU Zhengliang, TIAN Fangbao, YOUNG John, et al. Flapping foil power generator performance enhanced with a spring-connected tail[J]. Physics of Fluids, 2017, 29(12):1-18.
[10] SIALA F F, TOTPAL A D, LIBURDY J A. Characterization of vortex dynamics in the near wake of an oscillating flexible foil[J]. Journal of Fluids Engineering, 2016, 138(10):1-12.
[11] TOTPAL A D, SIALA F F, LIBURDY J A. Energy harvesting of an oscillating foil at low reduced frequencies with rigid and passively deforming leading edge[J]. Journal of Fluids & Structures, 2018, 82(1):329-342.
[12] ZHU Qiang, PENG Zhangli. Mode coupling and flow energy harvesting by a flapping foil[J]. Physics of Fluids, 2009, 21(3):1-10.
[13] PENG Zhangli,ZHU Qiang. Energy harvesting through flow-induced oscillations of a foil[J]. Physics of Fluids, 2009, 21(12):1-9.
[14] KINSEY T, DUMAS G. Parametric study of an oscilla-ting airfoil in a power-fxtraction regime[J]. AIAA Journal, 2008, 46(6):1318-1330.
[15] KINSEY T, DUMAS G. Computational fluid dynamics analysis of a hydrokinetic turbine based on Oscillating Hydrofoils[J]. Journal of Fluids Engineering: Transactions of the ASME, 2012, 134(2):1-16.
[16] KARBASIAN H R, ESFAHANI J A, BARATI E. Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation[J]. Renewable Energy, 2015, 81(9):816-824.
[17] 马鹏磊,王勇,刘海宾,等.摆式振荡水翼的水动力性能分析[J].太阳能学报,2018,39(3):665-672. MA Penglei, WANG Yong, LIU Haibin, et al. Analysis on hydrodynamic performance of flapping foil with swing motion[J]. Acta Energiae Solaris Sinica, 2018, 39(3):665-672.
[18] 马鹏磊. 振荡翼的水动力特性及捕能机理研究[D].济南: 山东大学,2019. MA Penglei. Study on Hydrodynamic Characteristics and energy harvesting mechanism of oscillating foils[D]. Jinan: Shandong University, 2019.
[19] CHEN Yongliang, NAN Jingwen, WU Jie. Wake effect on a semi-active flapping foil based energy harvester by a rotating foil[J]. Computers & Fluids, 2018(1):51-63.
[20] 王勇,刘海宾,谢玉东,等.双水翼耦合振荡捕获潮流能系统2维数值模拟[J].四川大学学报(工程科学版), 2016, 48(5):173-179. WANG Yong, LIU Haibing, XIE Yudong, et al. Two-dimensional numerical simulation of dual-oscillating hydrofoils in an energy extraction system[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(5):173-179.
[1] 逯建伟,王勇*,谢玉东. 振荡翼捕获能量系统的流体动力性能[J]. 山东大学学报(工学版), 2013, 43(5): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!