山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (5): 56-63.doi: 10.6040/j.issn.1672-3961.0.2019.539
• • 上一篇
陈保奎,孙奉仲*,高明,史月涛
CHEN Baokui, SUN Fengzhong*, GAO Ming, SHI Yuetao
摘要: 为预测湿法脱硫系统(wet flue gas desulfurization, WFGD)浆液温度,提出湿烟气绝热饱和温度的概念,推导浆液温度与入口烟气温度及含湿量的函数关系。基于预测的浆液温度,建立脱硫塔内液滴运动、热质传递及压差分布一维耦合数学模型;分析脱硫系统三维不均匀性对于模型准确度的影响;用龙格-库塔法对模型进行迭代求解,探讨脱硫塔内主要运行变量(浆液颗粒直径、烟气入口温度及液气比)对传热传质的影响,获得相关参数的一维分布规律。为验证模型的正确性,分别进行现场测试和物模试验。结果表明,预测的浆液温度与现场实测温度有较好的一致性,最大相对误差为4.56%;浆液颗粒直径是影响传热传质的主要因素;颗粒在下降过程中速度迅速衰减,并趋向于最终不变值;烟气温度沿塔高呈指数规律分布。与模型预测温度及压力相比,物模试验温度分布与压力分布的最大相对误差分别为4.72%和6.46%。模型具有较高的准确度,对脱硫塔的设计、运行及SO2的传质研究有指导意义。
中图分类号:
[1] 尚光旭, 司传海, 刘媛.“十三五”除尘脱硫脱硝除尘行业政策导向及发展趋势[J].中国环保产业, 2016(10):21-23. SHANG Guangxu, SI Chuanhai, LIU Yuan. Industrial policy guiding and development trend for dust removal desulfurization and denitration in “the Thirteenth Five-year Plan”[J]. China Environmental Protection Industry, 2016(10): 21-23. [2] 钟毅, 高翔, 王惠挺, 等.基于CFD技术的湿法烟气脱硫系统性能优化[J].中国工程电机学报, 2018, 28(32):18-22. ZHONG Yi, GAO Xiang, WANG Huiting, et al. Performance optimization of wet flue desulphrization system based on CFD technology[J]. Proceedings of the CSEE, 2018, 28(32): 18-22. [3] DE GISI S, MOLINO A, NOTARNICOLA M. Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: a feasibility study[J]. Process Saf Environ Prot, 2017, 109: 117-129. [4] 郝文阁, 赵光玲, 王东鹏, 等.石灰石湿法脱硫过程中SO2吸收数学模型[J].环境工程学报, 2008, 2(7):969-972. HAO Wenge, ZHAO Guangling, WANG Dongpeng, et al. Mathematic model of absorption of sulfur dioxide in wet flue gas desulfurizaiton[J]. Chinese Journal of Environmental Engineering, 2008, 2(7): 969-972. [5] GUELLI U, OUZA S M A, SANOS F B F, et al. Limestone dissolution in flue gas desulfurization-experimental and numerical study[J]. Journal of Chemieal Technology & Biotechnology, 2010, 85: 1208-1214. [6] OLAUSSON S, WALLIN M, BJERLE I. A model for the absorption of sulfur dioxide into a limestone slurry[J]. Chemical Engineering Journal, 1993, 51: 99-108. [7] XU Zhen, XIAO Yunhan, WANG Yue. Experimental and theoretical studies on air humification by a water spray at elevated pressure[J]. Applied Thermal Engineering, 2007, 27(14/15): 2549-2558. [8] LINDQUIST T, THERN M, TORISSON T. Experimental and theoretical results of a humidification tower in an evaporative gas turbine cycle pilot[C] //Proceedings of the ASME Turbo Expo 2002. New York, USA: American Society of Mechanical Engineers, 2002. [9] 凡凤仙, 杨林军, 袁竹林, 等.喷淋条件下水汽饱和度分布特性[J].化工学报, 2009, 60(7):1644-1650. FAN Femgxian, YANG Linjun, YUAN Zhulin, et al. Properties of water vapor supersaturation under spray scrubbing conditions[J]. Journal of Chemical Industry and Engineering, 2009, 60(7): 1644-1650. [10] 熊桂龙, 辛成运, 杨林军, 等.蒸汽相变协同湿法脱硫系统中温湿度变化特性[J]. 中国电机工程学报, 2011, 31(8): 18-24. XIONG Guilong, XIN Chengyun, YANG Linjun, et al. Temperature and humidity characteristics of flue gas from combined wet flue gas desulfurizaion system and heterogenous condensation[J]. Proceedings of the CSEE, 2011, 31(8): 18-24. [11] WU Hao, YANG Linjun. Improving the removal of fine particles by heterogeneous condensation during WFGD processes[J]. Fuel Processing Technology, 2016, 145: 116-122. [12] WU Hao, PAN Danping. Improving the removal of fine particles from desulfurized flue gas by adding humid air[J]. Fuel, 2016, 184: 153-161. [13] 林永明, 高翔.大型湿法烟气脱硫喷淋塔内阻力特性数值模拟[J].中国电机工程学报, 2008, 28(5): 28-33. LIN Yongming, GAO Xiang. Numerical simulation on resistance characteristic of large scale wet flue gas desulfrization spraying scrubber[J]. Proceedings of the CSEE, 2008, 28(5): 28-33. [14] LI Hongwei, DUAN Hongwei, WANG Wenbo. Numerical simulation study on different spray rates of three-area water distribution in wet cooling tower of fossil-fuel power station[J]. Applied Thermal Engineering, 2018, 130: 1558-1567. [15] MOHAMMAND Zunaid, QASIM Murtaza, SAMSHER Gautam. Energy and performance analysis of multi droplets shower cooling tower at different inlet water temperature for air cooling application[J]. Applied Thermal Engineering, 2017, 121: 1070-1079. [16] 潘卫国, 冷雪峰.不同喷淋层投运方式下脱硫塔内流场特性的数值研究[J].上海电力学院学报, 2009, 25(5):413-417. PAN Weiguo, LENG Xuefeng. Numerical simulation of flow field inside WFGD under different spray levels operation[J]. Journal of Shanghai University of Electric Power, 2009, 25(5): 413-417. [17] 林瑜, 陈德珍.大型脱硫塔喷淋段气液两相流动与传热的数值仿真与验证[J].燃烧科学与技术, 2016, 22(1):1-8. LIN Yu, CHEN Dezhen. Numerical simulation and verification of gas-liquid two-phase flow and heat transfer in spraying zone of large-scale desulfurization absorption tower[J]. Journal of Combustion Science and Technology, 2016, 22(1): 1-8. [18] 沈维道, 蒋志敏, 童钧耕.工程热力学[M].北京:高等教育出版社, 2008. [19] 王立秋, 魏焕彩, 周学圣.工程数值分析[M]. 济南:山东大学出版社, 2002. |
[1] | 刘芳1,2,陈宝明2,王丽2. 多孔介质对封闭腔体内对流传热传质的影响[J]. 山东大学学报(工学版), 2011, 41(1): 145-150. |
[2] | 高明 史月涛 王妮妮 孙奉仲 平亚明. 侧风环境下自然通风湿式冷却塔周向进风变化规律[J]. 山东大学学报(工学版), 2009, 39(3): 154-158. |
[3] | 耿文广 陈宝明 田茂诚 刘芳. 双扩散效应对室内VOCs对流扩散的影响[J]. 山东大学学报(工学版), 2008, 38(6): 61-64. |
[4] | 赵元宾,孙奉仲,王凯,高明 . 自然通风湿式冷却塔传热传质的三维数值分析[J]. 山东大学学报(工学版), 2008, 38(5): 36-41 . |
|